New Medicinal Plants Derivatives for Tuberculosis Treatment in Patent Documents

Authors

  • Paula Teixeira Pinto Ferreira Neto National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Manguinhos, RJ, Brazil https://orcid.org/0000-0003-0215-222X
  • Carla Junqueira Moragas Tellis National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Manguinhos, RJ, Brazil https://orcid.org/0000-0001-9834-2874
  • Fabrícia Pires Pimenta Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, PR, Brazil https://orcid.org/0000-0002-2315-1974

DOI:

https://doi.org/10.9771/cp.v15i1.37360

Keywords:

Mycobacterium tuberculosis, Drug Development, Biodiversity.

Abstract

The present work focused on conducting technological research based on patents for the identification of medicinal plant derivatives for the treatment of tuberculosis. The use of patents as a source of information can optimize the development of new drugs for the treatment of tuberculosis. The identification of new technologies was made through the Orbit Intelligence portal, using the sentence “(+ tuberculosis +) / TI / AB AND (A61K OR A61P) / IPC AND PRD> = 2015” as a research strategy. 16 families of patents presented medicinal plant derivatives with evidence of in vitro efficacy against resistant strains of Mycobacterium tuberculosis. The patent protection of the identified natural products is restricted to the countries of the owners of the new products: China, the Republic of Korea, and Russia. Most of the derivatives of medicinal plants identified are isolated substances, mainly flavonoids, and terpenes, extracted from different plant species, thus being characterized as phytopharmaceuticals.

Downloads

Download data is not yet available.

Author Biographies

Paula Teixeira Pinto Ferreira Neto, National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Manguinhos, RJ, Brazil

Master in Public Health from the Sérgio Arouca National School of Public Health, Oswaldo Cruz Foundation, in 2018.

Carla Junqueira Moragas Tellis, National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Manguinhos, RJ, Brazil

PhD in Sciences with emphasis on Natural Products from the Federal University of Rio de Janeiro in 2006.

Fabrícia Pires Pimenta, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, PR, Brazil

PhD in Medical Sciences from the State University of Rio de Janeiro in 2008.

References

AUBRY, A. et al. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother., [s.l.], v. 48, n. 4, p. 1.281-1.288, 2004.

AZEVEDO, V. S. et al. Prospecção Científica e Tecnológica da Tuberculose no Maranhão e o Uso Medicinal da Copaifera Langsdorffii no Tratamento. Cadernos de Prospecção, Salvador, v. 13, n. 3, p. 707-720, 2020.

BOLZANI, V. da S. Biodiversidade, bioprospecção e inovação no Brasil. Cienc Cult., [s.l.], v. 68, n. 1, p. 4-05, 2016.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Manual de Recomendações para o Controle da Tuberculose no Brasil. Brasília, DF: Ministério da Saúde, 2019. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/manual_recomendacoes_controle_tuberculose_brasil_2_ed.pdf. Acesso em: 21 set. 2019.

COHEN, J. The New World of Global Health [News Focus]. Science, [s.l.], v. 311, p. 162-167, 2006.

DENG, S.; WEST, B. J.; JENSEN, J. C. A quantitative comparison of phytochemical components in global noni fruits and their commercial products. Food Chem., [s.l.], v. 122, p. 267-270, 2010.

FERREIRA NETO, P. T. P.; OLIVEIRA, V. G.; PIMENTA, F. P. Novas tecnologias para o tratamento da tuberculose: o que as patentes nos dizem. Química Nova, [s.l.], v. 43, n. 7, p. 998-1009, 2020.

GARCIA, A. et al. Recent advances in antitubercular natural products. Eur. J. Med. Chem., [s.l.], v. 49, p. 1-23, 2012.

GAUTAM, R.; SAKLANI, A.; JACHAK, S. M. Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol., [s.l.], v. 110, p. 200-234, 2007.

GOMES, M. N. et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem., [s.l.], v. 137, p. 126-138, 2017.

HASENCLEVER, L. et al. A indústria de fitoterápicos brasileira: desafios e oportunidades. Cien. Saúde Colet., [s.l.], v. 22, n. 8, p. 2.559-2.569, 2017.

HE, X. et al. Bletilla striata: medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., [s.l.], v. 195, p. 20-38, 2017.

LEE, S. Y. et al. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur. J. Pharmacol., [s.l.], v. 762, p. 333-343, 2015.

LIBARDO, J. M.; BOSHOFF, H. I.; BARRY, C. E. The present state of the tuberculosis drug development pipeline. Curr Opin Pharmacol., [s.l.], v. 42, p. 81-94, 2018.

MANDAL, N. et al. Diagnosis and treatment of pediatric tuberculosis: An insight review. Crit Rev Microbiol., [s.l.], v. 43, n. 4, p. 466-480, 2017.

MAZLUN, M. H. et al. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules, [s.l.], v. 24, n. 13, p. 2.449, 2019.

OKOKON, J. E. et al. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays. Pharm Biol., [s.l.], v. 55, n. 1, p. 1.394-1.400, 2017.

PIMENTA, F. P. A patente como fonte de informação (des) necessária para a Biotecnologia em Saúde. TransInformação, [s.l.], v. 29, n. 3, p. 323-332, 2017.

PIMENTEL, V. et al. Biodiversidade brasileira como fonte da inovação farmacêutica: uma nova esperança? Revista do BNDES, [s.l.], v. 43, p. 41-89, 2015.

QASAYMEH, R. M. et al. Predictive Binding Affinity of Plant-Derived Natural Products Towards the Protein Kinase G Enzyme of Mycobacterium tuberculosis (MtPknG). Plants, [s.l.], v. 8, n. 11, p. 477, 2019.

SANTHOSH, R. S.; SURIYANARAYANAN, B. Plants: A source for new antimycobacterial drugs. Planta Med., [s.l.], v. 80, p. 9-21, 2014.

SANTOS, M. et al. Prospecção de tecnologias de futuro: métodos, técnicas e abordagens. Parc. Estrat., [s.l.], v. 9 n. 19, p. 189-229, 2004.

SANTOS-GANDELMAN, J.; MACHADO-SILVA, A. Drug development for cryptococcosis treatment: what can patents tell us? Mem. Inst. Oswaldo Cruz, [s.l.], v. 114, e180391, 2019.

SASIKUMAR, K.; GHOSH, A. R.; DUSTHACKEER, A. Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech., [s.l.], v. 8, n. 10, p. 427, 2018.

SHARIFI-RAD, J. et al. Medicinal plants used in the treatment of tuberculosis ethnobotanical and ethnopharmacological approaches. Biotechnol Adv., [s.l.], p. 107134, 2017.

SIENIAWSKA, E. et al. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med Princ Pract., [s.l.], v. 26, p. 1-17, 2017.

SIMÕES, C. M. A. et al (org.). Farmacognosia: da planta ao medicamento. 6. ed. Porto Alegre: Editora da UFRGS. Florianópolis: Editora da UFSC, 2010. 1.104p.

SURIYANARAYANAN, B.; SHANMUGAM, K.; SANTHOSH, R. S. Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase. Rom Biotechnol Lett., [s.l.], v. 18, p. 1.587-1.593, 2013.

VILLAUME, S. A. et al. Natural and Synthetic Flavonoids as Potent Mycobacterium tuberculosis UGM Inhibitors. Chem Eur J., [s.l.], v. 23, n. 43, p. 10.423-10.429, 2017.

WHO – WORLD HEALTH ORGANIZATION. Global tuberculosis report 2019. Geneva: 2019. Disponível em: https://www.who.int/tb/publications/global_report/en/. Acesso em: 22 out. 2019.

WHO – WORLD HEALTH ORGANIZATION. Neglected tropical diseases. [2020]. Disponível em: https://www.who.int/neglected_diseases/diseases/en/. Acesso em: 15 jan. 2020.

XU, Z. et al. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci U S A., [s.l.], v. 114, n. 30, p. 7.993-7.998, 2017.

ZHENG, Y. et al. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med, [s.l.], v. 14, n. 400, 2014.

Published

2022-01-01

How to Cite

Ferreira Neto, P. T. P., Tellis, C. J. M., & Pimenta, F. P. (2022). New Medicinal Plants Derivatives for Tuberculosis Treatment in Patent Documents. Cadernos De Prospecção, 15(1), 275–290. https://doi.org/10.9771/cp.v15i1.37360

Issue

Section

Prospecções Tecnológicas de Assuntos Específicos