Bibliometric and Patent Analysis of Fischer-Tropsch Synthesis Catalysts for Saf Production

Authors

DOI:

https://doi.org/10.9771/cp.v17i5.62904

Keywords:

Catalysts, Fischer-Tropsch, Bibliometric Analysis.

Abstract

This study explores the role of Fischer-Tropsch (FT) synthesis in producing sustainable aviation fuel (SAF), crucial for reducing CO₂ emissions in aviation. Invented by Franz Fischer and Hans Tropsch in the 1920s, FT synthesis transforms syngas, into liquid hydrocarbons using metal catalysts, mainly iron (Fe) or cobalt (Co). This process is vital for creating liquid fuels from coal, natural gas, or biomass, especially where petroleum is scarce or costly. The study includes a detailed bibliometric and patent analysis of catalysts in FT synthesis, focusing on SAF. A review of 1,236 articles from 2003 to 2024 in Scopus and Web of Science shows China leading in scientific publications, followed by the U.S., reflecting their heavy investment in sustainable aviation. Additionally, analysis of 2,128 patent families from The Lens Patents platform identifies the U.S. and China as major innovators; focus on more efficient and sustainable SAF catalysts to advance FT technology.

Downloads

Download data is not yet available.

Author Biographies

Jorge Arce Castro, Federal University of Bahia

Bachelor's degree in Chemistry from the University of Oriente, Cuba, in 2020.

Artur José Santos Mascarenhas, Federal University of Bahia

PhD in Chemistry from the State University of Campinas in 2004.

Silvio Alexandre Beisl Vieira de Melo , Federal University of Bahia

PhD in Chemical Engineering from the Federal University of Rio de Janeiro in 1997.

Yanier Sánchez Hechavarría, Federal University of Bahia

PhD in Mechanical Engineering Sciences from the University of Oriente, Cuba, in 2004.

References

ASTM STANDARDS. ASTM D7566. Specifiation for Aviation Turbine Fuels Containing Synthesized Hydrocarbons. DEF STAN 91-91: UK Defence Standard; MIL-DTL-83133 J: Turbine fuel, aviation, kerosene-type, JP-8 (NATO F34), NATO F-35, and JP-8 + 100 (NATO F-37). 2022.

AZEVEDO, J. P. Emissão de gases de efeito estufa pela aviação civil: biocombustíveis no Brasil. 2020. 50p. Monografia (Bacharelado em Ciências Aeronáuticas) – Universidade do Sul de Santa Catarina, Itajaí, 2020.

BUBE, S. et al. Kerosene production from power-based syngas – A technical comparison of the Fischer-Tropsch and methanol pathway. Fuel, [s.l.], v. 366, p. 131269, 2024. DOI: https://doi.org/10.1016/j.fuel.2024.131269.

CLARKE, S. C. Managing The Molecule: refining in the Next Millennium. [S.l.: s.n.], 2000.

DA MATA QUINTELLA, Guilherme; ROHWEDER, Mayla; QUINTELLA, Cristina M. Estudo Prospectivo das Patentes de Resveratrol na Indústria Farmacêutica. Cadernos de Prospecção, Salvador, v. 11, n. 4, p. 1.110-1.110, jul. 2018. DOI: http://dx.doi.org/10.9771/cp.v11i4.27156.

DIEHL, F. et al. Cobalt-based catalyst for Fischer-Tropsch synthesis. U.S. Patent n. 8,071,655. Washington, DC: U.S. Patent and Trademark Office, 6 Dic. 2011.

DOS REIS, Rafael Miranda Carvalho; DE PAULA PEREIRA, Neila; DA SILVA RABÊLO, Olivan. Estudo Prospectivo sobre o Potencial uso do Cacau no Setor de Cosméticos: análise das tendências atuais para PD&I. Cadernos de Prospecção, Salvador, v. 17, n. 2, p. 639-653, abril a junho de 2024. DOI: https://doi.org/10.9771/cp.v17i2.56025

DRY, M. E. The Fischer–Tropsch process: 1950-2000. Catalysis Today, [s.l.], v. 71, n. 3-4, p. 227-241, jan. 2002. DOI; https://doi.org/10.1016/S0920-5861(01)00453-9.

DUPAIN, X. et al. Are Fischer-Tropsch waxes good feedstocks for fluid catalytic cracking units? Catalysis Today, [s.l.], v. 106, n. 1-4, p. 288-292, oct. 2005. DOI: https://doi.org/10.1016/j.cattod.2005.07.148.

DUVENHAGE, Dawid J.; DEMIREL, Belma. Slurry bed fischer-tropsch catalysts with silica/alumina structural promoters. U.S. Patent n. 8,791,041, 29 Jul. 2014.

FESER, J.; GUPTA, A. Performance and emissions of drop-in aviation biofuels in a lab-scale gas turbine combustor. Journal of Energy Resources Technology, [s.l.], v. 143, n. 4, 2021. DOI: https://doi.org/10.1115/1.4048243.

GOLLAKOTA, A. R.; THANDLAM, A. K.; SHU, C. M. Biomass to bio jet fuels: a take off to the aviation industry. In: GOLLAKOTA, A. R.; THANDLAM, A. K.; SHU, C. M. Liquid Biofuels: Fundamentals, Characterization, and Applications. 2021. p. 183-213. DOI; https://doi.org/10.1002/9781119793038.ch6.

HONDO, E. et al. Direct Production of Hydrocarbons by Fischer-Tropsch Synthesis Using Newly Designed Catalysts. Journal of the Japan Petroleum Institute, [s.l.], v. 63, n. 5, p. 239-247, 2020. DOI; https://doi.org/10.1627/jpi.63.23.

HU, X. D.; LOI, Patrick J.; O'BRIEN, Robert J. High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis. U.S. Patent n. 7,452,844, 18 Nov. 2008.

HUBER, G. W.; IBORRA, S.; CORMA, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical. Reviews, [s.l.], v. 106, n. 9, p. 4.044-4.098, jun. 2006. DOI: https://doi.org/10.1021/cr068360d.

KEUNECKE, A. et al. Insights into Fischer – Tropsch catalysis: current perspectives, mechanisms, and emerging trends in energy research. Frontiers in Energy Research, [s.l.], v. 12, p. 1344179, 2024. DOI: https://doi.org/10.3389/fenrg.2024.1344179.

LECKEL, D. Diesel production from Fischer Tropsch: the past, the present, and new concepts. Energy Fuels, [s.l.], v. 23, n. 5, p. 2.342-2.358, abr. 2009. DOI; https://doi.org/10.1021/ef900064c.

MAULDIN, Charles H.; BURNS, Louis F. Preparation of titania and cobalt aluminate catalyst supports and their use in Fischer-Tropsch synthesis. U.S. Patent n. 7,253,136, 7 Ago. 2007.

MENDES, H. D. V. Viabilidade dos compromissos brasileiros de redução de emissões de gases de efeito estufa: uma análise dos períodos pré e pós-2020. 2020. 164p. Dissertação (Mestrado) – Centro de Desenvolvimento Sustentável, Universidade de Brasília, Brasília, Brasília, DF, 2020.

RICHARD, L. A. et al. Fischer-Tropsch performance correlated to catalyst structure: Trends in activity and stability for a silica-supported cobalt catalyst. Applied Catalysis A: General, [s.l.], v. 464-465, p. 200-206, ago. 2013. DOI: https://doi.org/10.1016/j.apcata.2013.05.047.

SCOPUS (Elsevier). Busca do Scopus. 2024. Disponível em: https://www.elsevier.com/pt-br/products/scopus/search. Acesso em: 2 jan. 2024.

SHASHA, R. et al. Mesoporous material coated cobalt-based fischer-tropsch synthesis catalyst and preparation method thereof. CN 103920496 A, 16 de jul. 2014.

SUO, Y. et al. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. Journal of Industrial and Engineering Chemistry, [s.l.], v. 117, p. 304-318, 2022. DOI: https://doi.org/10.1016/j.jiec.2022.08.026.

THE LEANS PATENTS. Página de busca. 2024. Disponível em: https://www.lens.org/. Acesso em: 2 jan. 2024.

VOSVIEWER. Bem-vindo ao VOSviewer: versão 1.6.20. 2023. Disponível em: https://www.vosviewer.com/. Acesso em: 2 jan. 2024.

YONG, W. et al. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor. US 2006/0251552 A1, 09 de Sep. 2006.

ZHANG, Y. et al. ZSM‐5‐Promoted Co‐Based Light‐Assisted Thermocatalytic Fischer–Tropsch Synthesis Catalyst for Production of Liquid Fuel. Energy Technology, [s.l.], v. 2301280, 2024. DOI: https://doi.org/10.1002/ente.202301280.

Published

2024-10-01

How to Cite

Castro, J. A., Mascarenhas, A. J. S., Melo , S. A. B. V. de ., & Hechavarría, Y. S. . (2024). Bibliometric and Patent Analysis of Fischer-Tropsch Synthesis Catalysts for Saf Production. Cadernos De Prospecção, 17(5), 1601–1617. https://doi.org/10.9771/cp.v17i5.62904

Issue

Section

Prospecções Tecnológicas de Assuntos Específicos