Immunological Technologies in the Development of Vaccines Against Human Leishmaniasis: a scientific and technological prospection

Authors

DOI:

https://doi.org/10.9771/cp.v17i5.61348

Keywords:

Leishmaniasis. Leishmaniasis vaccines. Vaccines., Leishmaniasis, Leishmaniasis vaccines, Vaccines

Abstract

Leishmaniasis manifests in three forms: Cutaneous Leishmaniasis (CL), Visceral Leishmaniasis (VL), and Mucocutaneous Leishmaniasis (MCL), affecting over one million people annually, with populations in endemic areas exceeding one billion individuals. This disease has a severe clinical phase and currently lacks an effective prophylactic measure, such as vaccines. This study aimed to conduct a scientific and technological prospecting of patents related to candidate vaccines for global immunization. The descriptors “Leishmaniasis”, “Vaccines”, “Leishmaniasis Vaccines”, and “Development Vaccine” were used. The prospecting identified promising results, although predominantly in the in silico and in vivo phases in mice. It is concluded that, with the ongoing post-pandemic economic recovery, technological advances, and new tools driven by artificial intelligence, significant progress in these studies is expected, with potential evolution to the human testing phase.

Downloads

Download data is not yet available.

Author Biographies

Fábio Feitosa Silva Junior, Universidade Tiradentes

Bachelor of Biomedical Sciences from Tiradentes University in 2024.

Ananda Lins Leite de Sousa, Universidade Tiradentes

Bachelor of Biomedical Sciences from Tiradentes University in 2024.

Livia Maria Amorim Costa Gaspar, Universidade Tiradentes

PhD in Industrial Biotechnology from Tiradentes University in 2018.

References

ALVAR, Jorge et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE, [s.l.], p. 1-12, 2012.

ANDRADE, AJ DE; SHIMABUKURO, PHF, GALATI, EAB O status taxonômico de Phlebotomus oliverioi (Diptera, Psychodidae) e uma designação de lectótipo para Psathyromyia brasiliensis, Iheringia. Série Zoologia, v.104, p. 426-431, 1 dez. 2014.

ASKARIZADEH, Anis; BADIEE, Ali; KHAMESIPOUR, Ali. Development of nano-carriers for Leishmania vaccine delivery. Expert Opinion on Drug Delivery, [s.l.], p. 1-68, 2020.

BASMENJ, Esmaeil Roohparvar et al. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis. Scientific Reports, [s.l.], p. 1-15, 2023.

BENCHIMOL, Jaime et al. Leishmaniasis: historical configuration in Brazil with an emphasis on the visceral disease, from the 1930s to the 1960s. Bol. Mus, [s.l.], p. 1-16, 2019.

BOURDEAU, Patrick; ROWTON, Edgar; PETERSEN, Christine. Impact of different Leishmania reservoirs on sand fly transmission: Perspectives from xenodiagnosis and other one health observations. Veterinary Parasitology, [s.l.], p. 1-27, 2020.

DANTAS, Rafael Ferreira; SANTOS, Eduardo Caio Torres dos; JUNIOR, Floriano Paes Silva. Past and future of trypanosomatids high-throughput phenotypic screening. Memórias do Instituto Oswaldo Cruz, [s.l.], p. 1-17, 2021.

FORATTINI, O.P.; RABELLO, E.X; PATTOLI, D. G. B. Sobre o encontro de Lutzomyia longipalpis (Lutz & Neiva, 1912) no Estado de São Paulo, Brasil. Revista de Saúde Pública, v. 4, p. 99-100, 1 jun. 1970.

GERMANÓ, María José et al. Evaluation of different total Leishmania amazonensis antigens for the development of a first-generation vaccine formulated with a Toll-like receptor-3 agonist to prevent cutaneous leishmaniasis. Memórias do Instituto Oswaldo Cruz, [s.l.], p. 1-8, 2020.

GIL, Magdalena et al. Unequal effects of the COVID-19 pandemic on researchers: evidence from Chile and Colombia. Humanities and Social Sciences Communications, [s.l.], p. 1-13, 2023.

INPI – INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL. pePI - Pesquisa em Propriedade Industrial. 2024. Disponível em: https://busca.inpi.gov.br/pePI/servlet/PatenteServletController. Acesso em: 22 mar. 2024.

KAMMON, Olga; TSANAKTSIDOU, Evgenia. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. International Journal of Pharmaceutics, [s.l.], p. 1-51, 2021.

KIPLAGAT, Steve et al. Discovery of the vector of visceral leishmaniasis, Phlebotomus (Artemievus) alexandri Sinton, 1928, in Kenya suggests complex transmission dynamics. Current Research in Parasitology & Vector-Borne Diseases, [s.l.], p. 1-10, 2023.

LAINSON, Ralph; SHAW, Jeffrey Jon. O gênero Leishmania Ross, 1903 especulações sobre evolução e especiação. In: CONFERÊNCIA INTERNACIONAL, 1984, Montpellier. Leishmania. Taxonomia e filogenia; Aplicações eco-epidemiológicas. Montpellier: IMEEE, p. 241-245. 1986.

LEISHMANIASIS. 2023. Disponível em: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Acesso em: 22 mar. 2024.

LOZANO-SARDANETA, Yokomi N. et al. Surveillance of sand flies (Psychodidae, Phlebotominae) from Mexico: Altitudinal and climatic patterns after historical and new geographic records in endemic areas of leishmaniasis. Acta Tropica, [s.l.], p. 1-10, 2024.

LUNA, Expedito José de Albuquerque; CAMPOS, Sérgio Roberto de Souza Leão da Costa. Vaccine development against neglected tropical diseases. Cad. Saúde Pública, [s.l.], p. 1-14, 2020.

MEDKOUR, Hacène et al. Potential animal reservoirs (dogs and bats) of human visceral leishmaniasis due to Leishmania infantum in French Guiana. PLOS Neglected Tropical Diseases, [s.l.], p. 1-15, 2019.

ORGANIZAÇÃO MUNDIAL DE SAÚDE. Leishmaniose . Disponível em: <https://www.who.int/news-room/fact-sheets/detail/leishmaniasis>. Acessado em: 20 marc, 2024.

ORYAN, A.; AKBARI, M. Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, [s.l.], p. 1-8, 2016.

SANTI, Ana Maria Murta; MURTA, Silvane Maria Fonseca. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Memórias do Instituto Oswaldo Cruz, [s.l.], p. 1-7, 2022.

TASLIMI, Yasaman et al. Comparison of Protective Potency of DNA and Live Vaccines Expressing A2-CPA-CPB-CTE Antigens against Visceral Leishmaniasis in Syrian Hamster as Preliminary Study. Iran J Parasitol, [s.l.], p. 1-10, 2020.

VELEZ, Rita; GÁLLEGO, Montserrat. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Tropical Medicine and International Health, [s.l.], p. 1-18, 2020.

YADAV, Sunita et al. IFN-γ + CD4+T cell- Driven prophylactic potential of recombinant LDBPK_252400 hypothetical protein of Leishmania donovani against Visceral Leishmaniasis. Journal Pre-proofs, [s.l.], p. 1-42, 2020.

ZABALA-PENÃFIEL, A. et al. Serine proteases profiles of Leishmania (Viannia) braziliensis clinical isolates with distinct susceptibilities to antimony. Scientific Reports, v. 11, n. 1, p. 1-11, 9 jul. 2021.

ZHANG, Jianhui et al. Development of dominant epitope-based vaccines encoding Gp63, Kmp-11 and Amastin against visceral leishmaniasis. Immunobiology, [s.l.], p. 1-11, 2021.

Published

2024-10-01

How to Cite

Silva Junior, F. F., Sousa, A. L. L. de, & Gaspar, L. M. A. C. . (2024). Immunological Technologies in the Development of Vaccines Against Human Leishmaniasis: a scientific and technological prospection. Cadernos De Prospecção, 17(5), 1478–1492. https://doi.org/10.9771/cp.v17i5.61348

Issue

Section

Prospecções Tecnológicas de Assuntos Específicos