Innovative Materials Applied to the Development of Latent Fingerprints: a technological prospection in the world context of forensic sciences
DOI:
https://doi.org/10.9771/cp.v16i4.50490Keywords:
Fingerprints, Nanoparticles, Conjugated Polymers.Abstract
In recent years there has been an increase in innovations in the field of forensic science. About biometric analysis, especially in the development of latent fingerprints, the nanoparticles and conjugated polymers, stand out as innovative materials, which are trying to contour the challenges of the main area, in respect of the configuration of conventional protocols, the quality of development, sensitivity, and selectivity of the applied methods and toxicity of the reagents. The data basis Patent Inspiration, Espacenet, Derwent Innovations, WIPO and Scopus were utilized in the search for patents and scientific articles related to Forensic Science and to the use of nanoparticles and conjugated polymers applied to the latent fingerprint development, in order to present a current overview of the developed research in this area. It was observed a growth in the research and development of new materials and methodologies for application in forensic area over the last few decades. Moreover, the main developing countries of this knowledge, as well as the main technological fields involved in this research were identified. The analysis of such data may indicate which materials have greater potential, such as carbon dots, quantum dots, rare earth nanomaterials, polypyrrole and poly(3,4-ethylenedioxythiophene), where research is concentrated and what degree of maturity they are, helping researchers in the development of new methodologies.
Downloads
References
ABEBE, B. et al. Latent Fingerprint Enhancement Techniques: A Review. Journal of Chemical Reviews, [s.l.], v. 2, n. 1, p. 40-56, 2020. DOI: 10.33945/SAMI/JCR.2020.1.3.
ASSIS, A. M. L. et al. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. WIREs Forensic Sci., [s.l.], v. 5, n. e1475, 2023. DOI: 10.1002/wfs2.1475.
BALSAN, J. D. et al. Desenvolvimento de metodologia de revelação de impressão digital latente com chalconas. Química Nova, [s.l.], v. 42, n. 8, p. 845-850, 2019. DOI: 10.21577/0100-4042.20170815.
BERESFORD, A. L., et al. Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. Journal of Forensic Sciences, [s.l.], v. 57, n. 1, p. 93-102, 2012. DOI: 10.1111/j.1556-4029.2011.01908.x.
BERRY, J.; STONEY, D. A. History and Development of Fingerprinting. In: LEE, H. C.; GAENSSLEN, R. E. Advances in Fingerprint Technology. Boca Raton, Fla: CRC Press, 2001. P. 10-49.
BERRY, C. et al. Development of latent fingerprints on metallic surfaces using electropolymerization processes. Journal of Forensic Sciences, [s.l.], v. 46, n. 4, p. 871-877, 2001.
BERSELLINI, C. et al. Development of latent fingerprints on metallic surfaces using electropolymerization processes. Journal of Forensic Sciences, [s.l.], v. 46, n. 4, p. 871-877, 2001.
BLEAY, S. M.; de PUIT, M. Introduction. In: BLEAY, S. M.; CROXTON, R. S.; PUIT, M. (2018). Fingerprint Development Techniques: Theory and Application. 1. ed., cap. 1, John Wiley & Sons Ltd., 383-399, 2018. P. 1-10. DOI: 10.1002/9781119187400.
BRONCOVÁ, G. et al. Optimization of Electrochemical Visualization of Latent Fingerprints with Poly(Neutral Red) on Brass Surfaces. Polymers, [s.l.], v. 13, n. 3.220, 2021a. DOI: 10.3390/polym13193220.
BRONCOVÁ, G. et al. Poly(neutral red) modified metal substrates for fingerprint visualization. Chem. Pap., [s.l.], v. 75, p. 6.673-6.676, 2021b. DOI: 10.1007/s11696-021-01794-6.
BROWN, R. M.; HILLMAN, A. R. Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene. Physical Chemistry Chemical Physics, [s.l.], v. 14, p. 8653-8661, 2012. DOI: 10.1039/c2cp40733g.
CADD, S. et al. Fingerprint composition and aging: A literature review. Science & Justice, [s.l.], v. 55, p. 219-238, 2015. DOI: doi.org/10.1016/j.scijus.2015.02.004.
COSTA, B. M. F. et al. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. Dyes and Pigments, [s.l.], v. 180, n. 108483, 2020. DOI: 10.1016/j.dyepig.2020.108483.
COSTA, C. V. et al. A low-potential electrochemical method for fast development of latent fingerprints on brass cartridge cases by electrodeposition of poly(3,4-ethylenedioxythiophene). Nano Select, [s.l.], v. 1, n. 4, p. 405-412, 2020a. DOI: 10.1002/nano.202000040.
COSTA, C. V. et al. Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals, [s.l.], v. 262, n. 116347, 2020b. DOI: 10.1016/j.synthmet.2020.116347.
CROXTON, R. S. et al. Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int, [s.l.], v. 15, n. 199, p. 93-102, 2010. DOI: 10.1016/j.forsciint.2010.03.019.
FAN, L. et al. New fluorescent conjugated polymer i.e. cationic 5-ethynyl-2-((4-ethynylphenyl)ethynyl)-3-methylthiophene-based fluorescent conjugated polymer useful in visualizing grease fingerprints and blood fingerprints. Depositante: Universidade Federal de Alagoas. CN113087878A. Depósito: 28 dez. 2021.
GIRELLI, C. M. A. et al. Comparison of practical techniques to develop latent fingermarks on fired and unfired cartridge cases. Forensic Science International, [s.l.], v. 250, p. 17-26, 2015. DOI: 10.1016/j.forsciint.2015.02.012.
HILLMAN, R. A. Visualization of print on surface by contacting surface comprising print with monomer-containing fluid, passing electrical current between surface and fluid to deposit polymer on surface, and applying electrical potential to surface. Depositante: Universidade de Leicester. WO2010109222-A1. Depósito: 8 jan. 2010.
HIMMELSTOß, S. F.; HIRSCH, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and Imaging. Methods Appl. Fluoresc., [s.l.], v. 7, n. 022002, 2019. DOI: 10.1088/2050-6120/ab0bfa.
HUYUNH, C.; HALÁMEK, J. Trends in fingerprint analysis. Trends in Analytical Chemistry, [s.l.], v. 82, p. 328-336, 2016. DOI: 10.1016/j.trac.2016.06.003.
KANODARWALA, F. K. et al. Nanoparticles used for fingermark detection – a comprehensive review. WIREs Forensic Science, [s.l.], v. 1, n. e1341, 2019. DOI: 10.1002/wfs2.1341.
KANODARWALA, F. K. et al. Novel upconverting nanoparticles for fingermark detection. Optical Materials, [s.l.], v. 111, 2021. DOI: 10.1016/j.optmat.2020.110568.
KASPER, S. P. Latent Print Processing Guide. [S.l.]: Academic Press, 2016. ISBN 9780128035078.
LEE, P. L. T. et al. Latent fingermark detection using functionalised silicon oxide nanoparticles: Optimisation and comparison with cyanoacrylate fuming. Forensic Science International, [s.l.], v. 315, n. 110442, 2020. DOI: 10.1016/j.forsciint.2020.110442.
LYRA, A. C. F. et al. Functionalization of pyrrole derivatives as a way to improve their solubility in aqueous medium for applying in latent fingerprints development. Forensic Chemistry, [s.l.], v. 26, n. 100373, 2021. DOI: 10.1016/j.forc.2021.100373.
MALIK, A. H. et al. Copolymer having aggregation-induced enhanced emission active conjugated polyelectrolyte used to develop latent fingerprints in forensic/criminal investigation comprises cationic polyelectrolyte and contrast developing latent fingerprints. Depositante: Instituto Indiano Guwahati de Tecnologia. IN201831017339A. Depósito: 16 dez. 2019.
NEZAKATI, T. et al. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev., [s.l.], v. 118, p. 6.766-6.843, 2018. DOI: 10.1021/acs.chemrev.6b00275.
PRABAKARAN, E.; Pillay, K. Nanomaterials for latent fingerprint detection: a review. Journal of Materials Research and Technology, [s.l.], v. 122, p. 1.856-1.885, 2021. DOI: 10.1016/j.jmrt.2021.03.110.
PRASAD, V. et al. Role of Nanomaterials for Forensic Investigation and Latent Fingerprinting-A Review. Journal of Forensic Sciences, [s.l.], v. 65, n. 1, p. 26-36, 2019. DOI: doi.org/10.1111/1556-4029.14172.
RAJPUT, N. Methods of Preparation of Nanoparticles – A Review. International Journal of Advances in Engineering & Technology, [s.l.], v. 7, n. 4, p. 1.806-1.811, 2015.
RIBEIRO, A. S. et al. Bilayer polymeric composite system for visualization of latent fingerprints present on metallic surfaces, including dark surfaces, or under visible and/or ultraviolet light, comprises conjugated polymer layer and fluorescent film layer. Depositante: Universidade Federal de Alagoas. BR102018009038A2. Depósito: 19 nov. 2019.
SAINI, M.; KAPOOR, A. K. Biometrics in Forensic Identification: Applications and Challenges. Journal of Forensic Medicine, [s.l.], v. 1, n. 2, 2016. DOI: 10.4172/2472-1026.1000108
SAPSTEAD, R. M., et al. Nanoscale control of interfacial processes for latent fingerprint enhancement. Faraday Discussions, [s.l.], v. 164, p. 391-410, 2013. DOI: 10.1039/c3fd00053b.
SAPSTEAD, R. M.; CORDEN, N.; HILLMAN, A. R. Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochimica Acta, [s.l.], v. 162, p. 119-128, 2015. DOI: 10.1016/j.electacta.2014.11.061
SIMGLA, N.; KAUR, M.; SOFAT, S. Automated latent fingerprint identification system: A review. Forensic Science International, [s.l.], v. 309, 2020. DOI: 10.1016/j.forsciint.2020.110187.
SLANINOVÁ, T. et al. The visualization of fingerprints using con-ducting polymer layers. Chemicke Listy, [s.l.], v. 113, n. 9, p. 530-539, 2019.
SONG, W. S.; YANG, H. Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots. Chem. Mater., [s.l.], v. 24, p. 1.961-1.967, 2012. DOI: 10.1021/cm300837z.
SODHI, G. S.; KAUR, J. Powder method for detecting latent fingerprints: A review. Forensic Science International, [s.l.], v. 120, n.3, p. 172-176, 2001. DOI: 10.1016/S0379-0738(00)00465-5.
WANG, J. et al. Time-Gated Imaging of Latent Fingerprints and Specific Visualization of Protein Secretions via Molecular Recognition. Anal. Chem, [s.l.], 2017. DOI: 10.1021/acs.analchem.7b03003.
WEI, S.; CUI, X. Synthesis of gold nanoparticles immobilized on fibrous nano‐silica for latent fingerprints detection. Journal of Porous Materials, [s.l.], v. 28, p. 751-762, 2021. DOI: 10.1007/s10934-020-01030-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Cadernos de Prospecção
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
O autor declara que: - Todos os autores foram nomeados. - Está submetendo o manuscrito com o consentimento dos outros autores. - Caso o trabalho submetido tiver sido contratado por algum empregador, tem o consentimento do referido empregador. - Os autores estão cientes de que é condição de publicação que os manuscritos submetidos a esta revista não tenham sido publicados anteriormente e não sejam submetidos ou publicados simultaneamente em outro periódico sem prévia autorização do Conselho Editorial. - Os autores concordam que o seu artigo ou parte dele possa ser distribuído e/ou reproduzido por qualquer forma, incluindo traduções, desde que sejam citados de modo completo esta revista e os autores do manuscrito. - Revista Cadernos de Prospecção está licenciado com uma Licença Creative Commons Attribution 4.0. Esta licença permite que outros remixem, adaptem e criem a partir do seu trabalho para fins não comerciais, e embora os novos trabalhos tenham de lhe atribuir o devido crédito e não possam ser usados para fins comerciais, os usuários não têm de licenciar esses trabalhos derivados sob os mesmos termos.Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.