Prospective Study of Technologies Used to Reduce Emissions Caused by Diesel Vehicles

Authors

DOI:

https://doi.org/10.9771/cp.v14i4.39058

Keywords:

Diesel, Emission, Sulfur Compounds.

Abstract

Diesel oil when used in engines can generate insoluble fuel deposits in injectors, this deposit reduces fuel economy and contributes to the generation of various types of pollutants. Thus, it is necessary to map the existing technologies that are used to reduce emissions of these pollutants in order to guide and structure the research regarding the development of new methods. The search strategy consisted of a combination of international classification codes, F01N-003 OR F01N-003/18) AND (C10L-001 OR C10L-001/24 OR C10L-001/24. Sixty-six selected patent documents were read and analyzed. It was possible to observe the existence of greater protection in 2002 and a superiority of records in the USA. Some technological trends are related to environmental technology, refer to devices and equipment, but only one refers to the control of emissions of sulfur compounds.

Downloads

Download data is not yet available.

Author Biographies

Humbervânia Reis Gonçalves da Silva, Federal University of Bahia, Salvador, BA, Brazil

PhD from the Federal University of Bahia. Analytical Chemistry in 2017.

Cristina M. Quintella, Federal University of Bahia, Salvador, BA, Brazil

PhD in Molecular Sciences from the University of Sussex (UK) in 1993. http://lattes.cnpq.br/7897779819494573

References

AMAIS, R. S. et al. Determination of P, S and Si in biodiesel, diesel and lubricating oil using ICP-MS/MS. Anal. Methods, [s.l.], v. 6, p. 4.516-4.520, 2014.

ANDERSON, R. W. et al. A new direct injection spark ignition (DISI) combustion system for low emissions. FISITA-96, [s.l.], 1996.

ANP – AGÊNCIA NACIONAL DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEL. Resolução n. 65, de 9 de dezembro de 2011: publicada no Diário Oficial da União (DOU) em 12 de dezembro de 2011.

AZAMBUJA, A. O. et al. Microbial community composition in Brazilian stored diesel fuel of varying sulfur content, using high-throughput sequencing. Fuel, [s.l.], p. 340-349, 2017.

BI, X. et al. Characteristics of the main primary source profiles of particulate matter across China: from 1987 to 2017. Atmos. Chem. Phys. Discuss., [s.l.], p. 1-53, 2018. DOI: 10.5194/acp-2018-687.

CHEN, Z. W. et al. Low-level sulfur in fuel determination using monochromatic WD XRF-ASTM D 7039-04, J. ASTM Int., [s.l.], v. 2, p. 1-12, 2005.

DORING, A.; ROTHE, D. Método para predizer óxidos de nitrogênio no fluxo de gás de escape de motores de combustão. PI0904801-4 A2, 9 set. 2008.

EDNEY, M. K. et al. Recent Advances in the Analysis of GDI and Diesel Fuel Injector Deposits. Fuel, [s.l.], v. 272, p. 117682, 2020. DOI: 10.1016/j.fuel.2020.117682.

EVANS, P.; WOLFF-BRICHE, C.; FAIRMAN, B. High accuracy analysis of low level sulfur in diesel fuel by isotope dilution high resolution ICP-MS, using silicon for mass bias correction of natural isotoperatios. J. Anal. At. Spectrom., [s.l.], v. 16, p. 964-969, 2001.

HEILMANN, J.; BOULYGA, S. F.; HEUMANN, K. G. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion. Anal. Bioanal. Chem., [s.l.], v. 380, p. 190-197, 2004.

INPI – INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL. [2020]. Disponível em: http://ipc.inpi.gov.br/classifications/ipc/ipcpub/?notion=scheme&version=20200101&symbol=none&menulang=pt&lang=pt&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart. Acesso em: 16 set. 2020.

KNOTHE, G.; RAZON, L. F. Biodiesel fuels, Prog. Energy Combust. Sci., [s.l.], v. 58, p. 36-59, 2017. DOI: 10.1016/j.pecs.2016.08.001.

LEI, C. X. Determination of manganese in gasoline by means of microwave digestion-GF AAS. Chinese Journal of Spectroscopy Laboratory, [s.l.], v. 26, p. 1.609-1.612, 2009.

LI, Y.; SHENG, Y. Determination of sulfur content in gasoline by ultraviolet fluorescence method and microcoulometry method. Anal. Instrum., [s.l.], v. 2, p. 27-31, 2013.

LUZ, M. S.; NASCIMENTO, A. N.; OLIVEIRA, P. V. Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry. Talanta, [s.l.], v. 115, p. 409-413, 2013.

LYLES, C. N. et al. Impact of organosulfur content on diesel fuel stability and implications for carbono steel corrosion. Environ Sci. Technol., [s.l.], v. 47, p. 6.052-6.062, 2013.

LYU, M. et al. State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China, Clean Technol. Environ. Policy, [s.l.], v. 22, p. 757-771, 2020. DOI: 10.1007/s10098-020-01834-x.

MEIRA, M. et al. Identificação de adulteração de biocombustível por adição de óleo residual ao diesel por espectrofluorimetria total 3D e análise das componentes principais. Quim. Nova, [s.l.], v. 34, p. 621, 2011a.

MEIRA, M. et al. Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta, [s.l.], v. 85, p. 430, 2011b.

MING-REN, M. U. Comparison of UV fluorescence method and EDX-ray fluorescence method in determination of sulfur content of export gasoline. Chinese Journal of Spectroscopy Laboratory, [s.l.], v. 30, p. 1.683-1.685, 2013.

NEEFT, J. P. A.; MAKKEE, M.; MOULIJN, J. A. Diesel particulate emission control. Sci. [s.l.], v. 47, ed. 1, p. 1-69, 1996. DOI: 10.1016/0378-382001002-8.

NOMNGONGO, P. N.; NGILA, J. C. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase micro extraction system, Spectrochim. Acta B At. Spectrosc., [s.l.], v. 98, p. 54-59, 2014.

NOMNGONGO, P. N. et al. Preconcentration of molybdenum, antimony and vanadium in gasoline samples using Dowex 1-x8 resin and their determination with inductively coupled plasma–optical emission spectrometry. Talanta, [s.l.], v. 110, p. 153-159, 2013.

NOMNGONGO, P. N. et al. Chemometric optimization of hollow fiber-liquid phase microextraction for preconcentration of trace elements in diesel and gasoline prior to their ICP-OES determination. Microchem. J., [s.l.], v. 114, p. 141-147, 2014.

OZANYAN, K. B. et al. Fiber-based UV laser-diode fluorescence sensor for commercial gasolines. Sensors Journal IEEE, [s.l.], v. 4, p. 681-690, 2004.

QUINTELLA, V. M. et al. Estudo Prospectivo Exploratório das Patentes de Métodos de Aprendizagem de Máquina Aplicados ao Mercado Financeiro. Cadernos de Prospecção, Salvador, v. 12, p. 113-125, 2019. DOI: 10.9771/cp.v12i1.27260.

SUFLITA, J. M. et al. Biocorrosion issues associated with the use of ultra-low sulfur diesel and biofuel blends in the energy infrastructure. In: LIENGEN, T. et al. (ed.). Understanding biocorrosion: fundamentals and applications. European of Corrosion (EFC): Elsevier Science, 2014. v. 66. p. 313-328.

TEIXEIRA, L. S. et al. Simultaneous determination of copper and iron in automotive gasoline by X-ray fluorescence after pre-concentration on cellulose paper. Talanta, [s.l.], v. 72, p. 1.073-1.076, 2007.

TORRES, D. P. et al. Determination of mercury in gasoline diluted in ethanol by GF AAS after cold vapor generation, pre- concentration in gold column and trapping on graphite tube. Microchem. J., [s.l.], v. 96, p. 32-36, 2010.

YEMASHOVA, N. A. et al. Biodeterioration of crude oil and oil derived products: a review. Rev. Environ Sci. Biotechnol, [s.l.], v. 6, p. 315-337, 2007.

Published

2021-10-01

How to Cite

Silva, H. R. G. da, & Quintella, C. M. (2021). Prospective Study of Technologies Used to Reduce Emissions Caused by Diesel Vehicles. Cadernos De Prospecção, 14(4), 1186–1200. https://doi.org/10.9771/cp.v14i4.39058

Issue

Section

Prospecções Tecnológicas de Assuntos Específicos