Prospective and Technological Study of Syngas Generation Using Catalysis

Authors

DOI:

https://doi.org/10.9771/cp.v11i5.27284

Keywords:

Biogas, Catalysis, Forecast.

Abstract

With an awareness of global warming, rising prices and fuel shortages, alternative sources of energy are needed. Substitution is a biomass, which presents a large amount of energy lost during the decomposition process. Biogas is an abundant source of energy, non-polluting, cheap and non-competing for space with other crops or food production. Thus, the work aims to present a prospective study that portrays the research stage in the area. These were the word combinations for the study: "biogas", "syngas" and "syngas and cataly *". The work as research on the system and low schooling have a long nature and a technological incentive in the area of incentive in several countries.

Downloads

Download data is not yet available.

Author Biography

Camila Lisdalia Dantas Ferreira, University of Brasilia, Brasilia, DF, Brazil

Assistant Teacher of the International Relations course - FAJS.

References

ASENCIOS, Y. J. O. Reações de reforma de biogás sobre catalisadores de NiO-MgO-ZrO2 e NiO-Y2O3-ZrO2. 2013. 122 f. Tese (Doutorado em Química) – Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 2013.

BRDAR, D. R.; JONES, M. R. GE IGCC Technology and experience with advanced gas turbines. Disponível em: <https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/technical/ger/ger-4207-ge-igcc-technology-experience-advanced-gas-turbines.pdf>. Acesso em: 6 jul. 2018.

CLARIVATE ANALYTICS. Web of Science: base de dados on-line. [2018]. Disponível em: <http://apps-webofknowledge.ez54.periodicos.capes.gov.br/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=5BrEhYkK1RLrztfNX4X&preferencesSaved=>. Acesso em: 3 jul. 2018.

DA SILVA, M. I.; DE BORTOLI, A. L. Modelagem e simulação do processo de formação do biogás. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, São Carlos, v. 6, n. 1, p. 1-7, 2018.

DOS SANTOS, R. O.; DE SOUSA, S. L.; PRATA, D. M. Simulation and optimization of a methanol synthesis process from different biogas sources. Journal of Cleaner Production, v. 186, p. 821-830, 2018.

DRIF, A. et al. Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Applied Catalysis A: General, v. 504, p. 576-584, 2015.

HERMES, N. A. Hidrogênio e nanotubos de carbono por decomposição catalítica do metano: desempenho de catalisadores à base de cobalto e alumínio. 2010. 93 f. Dissertação (Mestrado em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

KADAM, R.; PANWAR, N. L. Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, v. 73, p. 892-903, 2017.

LI, D. et al. Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst. Applied Catalysis B: Environmental, v. 200, p. 566-577, 2017.

MINISTRY OF COMMERCE PEOPLE’S REPUBLIC OF CHINA. Renewable energy law of the people’s Republico f China. 2013. Disponível em: <http://english.mofcom.gov.cn/article/policyrelease/Businessregulations/201312/20131200432160.shtml>. Acesso em: 6 jul. 2018.

MORAL, A. et al. Syngas production by means of biogas catalytic partial oxidation and dry reforming using Rh-based catalysts. Catalysis Today, v. 299, p. 280-288, 2018.

ORBIT INTELLIGENCE. Base de dados on-line. [2018]. Disponível em: <https://www.orbit.com>. Acesso em: 3 jul. 2018.

PHAN, T. S. et al. Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Applied Catalysis B: Environmental, v. 224, p. 310-321, 2018.

SCHULTZ, E.; SOARES, I. Reforma do biogás: revisão. 2014. Brasília, DF: Embrapa Agroenergia, 2014. Circular Técnica, 13.

SERRANO-LOTINA, A. et al. Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors. Journal of Power Sources, v. 196, n. 9, p. 4404-4410, 2011.

TEIXEIRA, L. P. Prospecção Tecnológica: importância, métodos e experiências da Embrapa Cerrados. 2013. Disponível em: <https://www.infoteca.cnptia.embrapa.br/bitstream/doc/981247/1/doc317.pdf>. Acesso em: 6 jul. 2018.

US DEPARTMENT OF ENERGY (NETL). Entrained flow gasifiers. GE Energy (Formerly Chevron Texaco) Gasifier. Disponível em: <https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasitfipedia/ge>. Acesso em: 6 jul. 2018.

VITA, A. et al. Methanol synthesis from biogas: a thermodynamic analysis. Renewable Energy, v. 118, p. 673-684, 2018.

YAO, X. et al. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Applied Surface Science, v. 402, p. 208-217, 2017.

ZENG, Y. X. et al. Low temperature reforming of biogas over K-, Mg-and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy. Applied Catalysis B: Environmental, v. 224, p. 469-478, 2018.

Published

2018-12-10

How to Cite

Guimarães, M. G., Ghesti, G. F., & Ferreira, C. L. D. (2018). Prospective and Technological Study of Syngas Generation Using Catalysis. Cadernos De Prospecção, 11(5), 1684. https://doi.org/10.9771/cp.v11i5.27284