Exploratory Prospective Study of Methods of Machine Learning Patents Applied to the Financial Market
DOI:
https://doi.org/10.9771/cp.v12i1.27260Keywords:
Machine Learning, Financial Market, Investment, Trading, Prospection.Abstract
This is a prospective study of the uses of machine learning technology applied to financial market trading and investment. Quick expansion on TI technology generated effective changes on daily financial routine. As futher changes may be expected, this prospection analyzed 257 patents from Espacenet database processed via Questel Orbit® software. It was found in 2016 a peak in 1st patent deposits that remains until the present. Most of applications was on outliers, feature selection and clustering. No holder was identified with financial core activity, pointing out the possibility of trade secret strategies. China and USA were the biggest depositors and the biggest market of these applications. The outstanding growth of the market and the identification of a horizon of technological maturation processes is a consequence of the recent development in process power, data readiness and cloud-based technology.
Downloads
References
CAVALCANTE, Rodolfo C. et al. Computational Intelligence and Financial Markets: a Survey and Future Directions. Expert Systems with Applications, [S.l.], v. 55, p. 194-211, 2016.
CHAKRABORTY, C.; JOSEPH, A. Machine learning at central banks. Staff Working Paper n. 674, Bank of England, 2017.
CRABTREE, J.; JIA, J. Inventores. Distributed Energy Management. Titular. Comfort-driven optimization of electric grid utilization. Patente US2010217550. 2009.
CRABTREE, J.; SELLERS, A. Inventores. Fractal Industry. Titular. Quantification for investment vehicle management employing an advanced decision platform. Patente US2017012465. 2017.
CRABTREE, J.; SELLERS, A. Inventores. Fractal Industry. Titular. Quantification for investment vehicle management and insurance process management. Patente WO201885756. 2018.
JEFFREY, E. S. Inventor. Jeffrey E. Titular. A variable group modeling system. Patente US2004088239. 2004a.
JEFFREY, E. S. Inventor. Jeffrey E. Titular. Automated method of and system for identifying, measuring and enhancing categories of value for a value chain. Patente US2004210509. 2004b.
JEFFREY, E. S. Inventor. Jeffrey E. Titular. Extended management system. Patente US2009043637. 2009a.
JEFFREY, E. S. Inventor. Jeffrey E. Titular. Market value matrix. Patente US2009018891. 2009a.
JEFFREY, E. S. Inventor. Jeffrey E. Titular. Predictive model development system applied to organization management. Patente US20160239919. 2016.
KHARGONEKAR, P. P.; DAHLEH, M.A. Advancing systems and control research in the era of ML and AI. Annual Reviews in Control, [S.l.], v. 45, p. 1-4, 2018. Disponível em: <https://doi.org/10.1016/j.arcontrol.2018.04.001>. Acesso em: 15 out. 2018.
LIU, W. et al. Inventores. Economy Research Institute Of State Grid Zhejiang Electric Power, Hangzhou Yihe Electric Power Technology Information, State Grid Corporation Of China (SGCC), State Grid Zhejiang Electric Power. Titulares. Management method of power engineering cost. Patente CN105930931. 2016.
ZASLAVSKY, A. et al. Inventores. Asap Software Express, Aventail, Credant Technologies, Dell, Dell International, Dell Marketing, Dell Software, Dell Systems, Emc Ip Holding, Force10 Networks, Maginatics, Mozy, Scaleio, Spanning Cloud Apps. Titulares. Visualization of fraud patterns. Patente US9330416. 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Cadernos de Prospecção
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
O autor declara que: - Todos os autores foram nomeados. - Está submetendo o manuscrito com o consentimento dos outros autores. - Caso o trabalho submetido tiver sido contratado por algum empregador, tem o consentimento do referido empregador. - Os autores estão cientes de que é condição de publicação que os manuscritos submetidos a esta revista não tenham sido publicados anteriormente e não sejam submetidos ou publicados simultaneamente em outro periódico sem prévia autorização do Conselho Editorial. - Os autores concordam que o seu artigo ou parte dele possa ser distribuído e/ou reproduzido por qualquer forma, incluindo traduções, desde que sejam citados de modo completo esta revista e os autores do manuscrito. - Revista Cadernos de Prospecção está licenciado com uma Licença Creative Commons Attribution 4.0. Esta licença permite que outros remixem, adaptem e criem a partir do seu trabalho para fins não comerciais, e embora os novos trabalhos tenham de lhe atribuir o devido crédito e não possam ser usados para fins comerciais, os usuários não têm de licenciar esses trabalhos derivados sob os mesmos termos.Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.