Materiais Inovadores Aplicados à Revelação de Impressões Digitais Latentes: uma prospecção tecnológica no contexto mundial das ciências forenses

Autores

DOI:

https://doi.org/10.9771/cp.v16i4.50490

Palavras-chave:

Impressões Digitais, Nanopartículas, Polímeros Conjugados.

Resumo

As nanopartículas e os polímeros conjugados se destacam como materiais inovadores na revelação de impressões digitais latentes. A pesquisa em torno desses novos materiais busca contornar os principais desafios enfrentados pelos protocolos convencionais. Assim, bases de dados de patentes e artigos foram utilizadas buscando relacionar a Ciência Forense ao uso de nanopartículas e de polímeros conjugados aplicados à revelação de impressões digitais, no intuito de apresentar um panorama atual das pesquisas desenvolvidas nessa área. Foram observados o crescimento das pesquisas nas últimas décadas, o desenvolvimento de novos materiais e metodologias, os principais países desenvolvedores desse conhecimento, assim como os principais campos tecnológicos envolvidos nessas pesquisas. A análise desses dados pode indicar quais materiais apresentam um maior potencial, como carbon dots, quantum dots, nanomateriais terras raras, polipirrol e poli(3,4-etilenodioxitiofeno), nos quais se concentram as pesquisas e em que grau de maturidade elas se encontram, auxiliando os pesquisadores no desenvolvimento de novas metodologias.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jeane Caroline da Silva Melo, Universidade Federal de Alagoas, Maceió, AL, Brasil

Bacharela em Química Tecnológica e Industrial pela Universidade Federal de Alagoas (2020), Mestra em Ciências pelo Instituto de Química e Biotecnologia da Universidade Federal de Alagoas (2022), atualmente doutoranda em Materiais pelo Centro de Tecnologia da Universidade Federal de Alagoas.

Adriano Ananias da Silva, Universidade Federal de Alagoas, Maceió, AL, Brasil

Bacharel em Química Tecnológica e Industrial pela Universidade Federal de Alagoas (2021), atualmente mestrando em Química e Biotecnologia pelo Instituto de Química e Biotecnologia da Universidade Federal de Alagoas.

Adriana Santos Ribeiro, Universidade Federal de Alagoas, Maceió, AL, Brasil

Possui graduação em Engenharia Química pela Universidade Federal de Alagoas (1996), Mestrado em Química e Biotecnologia pela Universidade Federal de Alagoas (1999) e Doutorado em Química pela Universidade Estadual de Campinas (2003). É Professor Associado 3 da Universidade Federal de Alagoas. 

Josealdo Tonholo, Universidade Federal de Alagoas, Maceió, AL, Brasil

Bacharel e Licenciado em Química pela Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (1988), Mestre e Doutor em Físico-Química pelo Instituto de Química de São Carlos (1991 e 1997) da Universidade de São Paulo. É Professor Titular do Instituto de Química e Biotecnologia da Universidade Federal de Alagoas e atualmente Reitor da Universidade Federal de Alagoas.

Referências

ABEBE, B. et al. Latent Fingerprint Enhancement Techniques: A Review. Journal of Chemical Reviews, [s.l.], v. 2, n. 1, p. 40-56, 2020. DOI: 10.33945/SAMI/JCR.2020.1.3.

ASSIS, A. M. L. et al. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. WIREs Forensic Sci., [s.l.], v. 5, n. e1475, 2023. DOI: 10.1002/wfs2.1475.

BALSAN, J. D. et al. Desenvolvimento de metodologia de revelação de impressão digital latente com chalconas. Química Nova, [s.l.], v. 42, n. 8, p. 845-850, 2019. DOI: 10.21577/0100-4042.20170815.

BERESFORD, A. L., et al. Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. Journal of Forensic Sciences, [s.l.], v. 57, n. 1, p. 93-102, 2012. DOI: 10.1111/j.1556-4029.2011.01908.x.

BERRY, J.; STONEY, D. A. History and Development of Fingerprinting. In: LEE, H. C.; GAENSSLEN, R. E. Advances in Fingerprint Technology. Boca Raton, Fla: CRC Press, 2001. P. 10-49.

BERRY, C. et al. Development of latent fingerprints on metallic surfaces using electropolymerization processes. Journal of Forensic Sciences, [s.l.], v. 46, n. 4, p. 871-877, 2001.

BERSELLINI, C. et al. Development of latent fingerprints on metallic surfaces using electropolymerization processes. Journal of Forensic Sciences, [s.l.], v. 46, n. 4, p. 871-877, 2001.

BLEAY, S. M.; de PUIT, M. Introduction. In: BLEAY, S. M.; CROXTON, R. S.; PUIT, M. (2018). Fingerprint Development Techniques: Theory and Application. 1. ed., cap. 1, John Wiley & Sons Ltd., 383-399, 2018. P. 1-10. DOI: 10.1002/9781119187400.

BRONCOVÁ, G. et al. Optimization of Electrochemical Visualization of Latent Fingerprints with Poly(Neutral Red) on Brass Surfaces. Polymers, [s.l.], v. 13, n. 3.220, 2021a. DOI: 10.3390/polym13193220.

BRONCOVÁ, G. et al. Poly(neutral red) modified metal substrates for fingerprint visualization. Chem. Pap., [s.l.], v. 75, p. 6.673-6.676, 2021b. DOI: 10.1007/s11696-021-01794-6.

BROWN, R. M.; HILLMAN, A. R. Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene. Physical Chemistry Chemical Physics, [s.l.], v. 14, p. 8653-8661, 2012. DOI: 10.1039/c2cp40733g.

CADD, S. et al. Fingerprint composition and aging: A literature review. Science & Justice, [s.l.], v. 55, p. 219-238, 2015. DOI: doi.org/10.1016/j.scijus.2015.02.004.

COSTA, B. M. F. et al. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. Dyes and Pigments, [s.l.], v. 180, n. 108483, 2020. DOI: 10.1016/j.dyepig.2020.108483.

COSTA, C. V. et al. A low-potential electrochemical method for fast development of latent fingerprints on brass cartridge cases by electrodeposition of poly(3,4-ethylenedioxythiophene). Nano Select, [s.l.], v. 1, n. 4, p. 405-412, 2020a. DOI: 10.1002/nano.202000040.

COSTA, C. V. et al. Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals, [s.l.], v. 262, n. 116347, 2020b. DOI: 10.1016/j.synthmet.2020.116347.

CROXTON, R. S. et al. Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int, [s.l.], v. 15, n. 199, p. 93-102, 2010. DOI: 10.1016/j.forsciint.2010.03.019.

FAN, L. et al. New fluorescent conjugated polymer i.e. cationic 5-ethynyl-2-((4-ethynylphenyl)ethynyl)-3-methylthiophene-based fluorescent conjugated polymer useful in visualizing grease fingerprints and blood fingerprints. Depositante: Universidade Federal de Alagoas. CN113087878A. Depósito: 28 dez. 2021.

GIRELLI, C. M. A. et al. Comparison of practical techniques to develop latent fingermarks on fired and unfired cartridge cases. Forensic Science International, [s.l.], v. 250, p. 17-26, 2015. DOI: 10.1016/j.forsciint.2015.02.012.

HILLMAN, R. A. Visualization of print on surface by contacting surface comprising print with monomer-containing fluid, passing electrical current between surface and fluid to deposit polymer on surface, and applying electrical potential to surface. Depositante: Universidade de Leicester. WO2010109222-A1. Depósito: 8 jan. 2010.

HIMMELSTOß, S. F.; HIRSCH, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and Imaging. Methods Appl. Fluoresc., [s.l.], v. 7, n. 022002, 2019. DOI: 10.1088/2050-6120/ab0bfa.

HUYUNH, C.; HALÁMEK, J. Trends in fingerprint analysis. Trends in Analytical Chemistry, [s.l.], v. 82, p. 328-336, 2016. DOI: 10.1016/j.trac.2016.06.003.

KANODARWALA, F. K. et al. Nanoparticles used for fingermark detection – a comprehensive review. WIREs Forensic Science, [s.l.], v. 1, n. e1341, 2019. DOI: 10.1002/wfs2.1341.

KANODARWALA, F. K. et al. Novel upconverting nanoparticles for fingermark detection. Optical Materials, [s.l.], v. 111, 2021. DOI: 10.1016/j.optmat.2020.110568.

KASPER, S. P. Latent Print Processing Guide. [S.l.]: Academic Press, 2016. ISBN 9780128035078.

LEE, P. L. T. et al. Latent fingermark detection using functionalised silicon oxide nanoparticles: Optimisation and comparison with cyanoacrylate fuming. Forensic Science International, [s.l.], v. 315, n. 110442, 2020. DOI: 10.1016/j.forsciint.2020.110442.

LYRA, A. C. F. et al. Functionalization of pyrrole derivatives as a way to improve their solubility in aqueous medium for applying in latent fingerprints development. Forensic Chemistry, [s.l.], v. 26, n. 100373, 2021. DOI: 10.1016/j.forc.2021.100373.

MALIK, A. H. et al. Copolymer having aggregation-induced enhanced emission active conjugated polyelectrolyte used to develop latent fingerprints in forensic/criminal investigation comprises cationic polyelectrolyte and contrast developing latent fingerprints. Depositante: Instituto Indiano Guwahati de Tecnologia. IN201831017339A. Depósito: 16 dez. 2019.

NEZAKATI, T. et al. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev., [s.l.], v. 118, p. 6.766-6.843, 2018. DOI: 10.1021/acs.chemrev.6b00275.

PRABAKARAN, E.; Pillay, K. Nanomaterials for latent fingerprint detection: a review. Journal of Materials Research and Technology, [s.l.], v. 122, p. 1.856-1.885, 2021. DOI: 10.1016/j.jmrt.2021.03.110.

PRASAD, V. et al. Role of Nanomaterials for Forensic Investigation and Latent Fingerprinting-A Review. Journal of Forensic Sciences, [s.l.], v. 65, n. 1, p. 26-36, 2019. DOI: doi.org/10.1111/1556-4029.14172.

RAJPUT, N. Methods of Preparation of Nanoparticles – A Review. International Journal of Advances in Engineering & Technology, [s.l.], v. 7, n. 4, p. 1.806-1.811, 2015.

RIBEIRO, A. S. et al. Bilayer polymeric composite system for visualization of latent fingerprints present on metallic surfaces, including dark surfaces, or under visible and/or ultraviolet light, comprises conjugated polymer layer and fluorescent film layer. Depositante: Universidade Federal de Alagoas. BR102018009038A2. Depósito: 19 nov. 2019.

SAINI, M.; KAPOOR, A. K. Biometrics in Forensic Identification: Applications and Challenges. Journal of Forensic Medicine, [s.l.], v. 1, n. 2, 2016. DOI: 10.4172/2472-1026.1000108

SAPSTEAD, R. M., et al. Nanoscale control of interfacial processes for latent fingerprint enhancement. Faraday Discussions, [s.l.], v. 164, p. 391-410, 2013. DOI: 10.1039/c3fd00053b.

SAPSTEAD, R. M.; CORDEN, N.; HILLMAN, A. R. Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochimica Acta, [s.l.], v. 162, p. 119-128, 2015. DOI: 10.1016/j.electacta.2014.11.061

SIMGLA, N.; KAUR, M.; SOFAT, S. Automated latent fingerprint identification system: A review. Forensic Science International, [s.l.], v. 309, 2020. DOI: 10.1016/j.forsciint.2020.110187.

SLANINOVÁ, T. et al. The visualization of fingerprints using con-ducting polymer layers. Chemicke Listy, [s.l.], v. 113, n. 9, p. 530-539, 2019.

SONG, W. S.; YANG, H. Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots. Chem. Mater., [s.l.], v. 24, p. 1.961-1.967, 2012. DOI: 10.1021/cm300837z.

SODHI, G. S.; KAUR, J. Powder method for detecting latent fingerprints: A review. Forensic Science International, [s.l.], v. 120, n.3, p. 172-176, 2001. DOI: 10.1016/S0379-0738(00)00465-5.

WANG, J. et al. Time-Gated Imaging of Latent Fingerprints and Specific Visualization of Protein Secretions via Molecular Recognition. Anal. Chem, [s.l.], 2017. DOI: 10.1021/acs.analchem.7b03003.

WEI, S.; CUI, X. Synthesis of gold nanoparticles immobilized on fibrous nano‐silica for latent fingerprints detection. Journal of Porous Materials, [s.l.], v. 28, p. 751-762, 2021. DOI: 10.1007/s10934-020-01030-8.

Downloads

Publicado

2023-05-26

Como Citar

Melo, J. C. da S., Silva, A. A. da ., Ribeiro, A. S. ., & Tonholo, J. (2023). Materiais Inovadores Aplicados à Revelação de Impressões Digitais Latentes: uma prospecção tecnológica no contexto mundial das ciências forenses. Cadernos De Prospecção, 16(4), 1075–1092. https://doi.org/10.9771/cp.v16i4.50490