SENSITIVITY OF DRAINAGE MORPHOMETRY AND TOPOGRAPHIC ATTRIBUTES TO THE SOURCE AND SPATIAL RESOLUTION OF DSM AND DEM

Authors

DOI:

https://doi.org/10.9771/geo.v18i1.48267

Keywords:

Stream channel, Accuracy, Landscape characterization, DSM, DEM

Abstract

The determination of stream channel and terrain attributes is dependent on the spatial resolution of Digital Surface Models (MDS) and Elevation (DEM) and the source of the altimetric data used. In this work, the sensitivity of drainage morphometry and terrain attributes of an urban-rural watershed to the spatial resolution and source of MDS and MDE was analyzed. Five MDSs obtained via orbital remote sensing (radar), with spatial resolutions of 12.5, 30 and 90 m, and one MDE of 5 m generated with altimetric data obtained via terrestrial remote sensing (aerial photographs) were used. The stream network extracted from DEM 5 allowed a more precise and accurate delineation than that of the MDS for places where the contribution area was larger. There were incongruities in the drainage headwaters for all topographic bases, which is attributed to the flow distribution algorithm used. In the low spatial resolution MDS (Alos Palsar, SRTM 30, 90, Topodata and Aster) the topographical features were not represented realistically. The terrain attributes derived from the high spatial resolution DEM realistically represented the topographic characteristics of the watershed, including anthropogenic landforms.

Downloads

Download data is not yet available.

Author Biography

Viviane Capoane, Universidade Estadual de Mato Grosso do Sul (UEMS)

Doutorado em Geografia pela Universidade Federal do Paraná (UFPR), Professora adjunta da Universidade Estadual de Mato Grosso do Sul (UEMS).

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2014.

ANTONIC, O.; DALIBOR, H.; RENATA, P. DEM-based depth in sink as an environmental estimator. Ecological Modelling, v. 138, n. 1-3, p. 247-254, 2001.

ASF. Alaska Satellite Facility. Alos Palsar. Disponível em: https://search.asf.alaska.edu/#/. Acesso: 20 fev. 2020.

ANDERSON, M.G.; BURT, T.P. The role of topography in controlling throughflow generation. Earth Surface Processes, v. 3, p. 331-344, 1978.

ARIZA-VILLAVERDE, A.B.; JIMÉNEZ-HORNERO, F.J.; RAVÉ, E.G. Influence of DEM resolution on drainage network extraction: a multifractal analysis. Geomorphology, v. 241, p. 243-254, 2015.

CAMPO GRANDE. Diário Oficial de Campo Grande-MS. 2013. Extrato do contrato n. 20, celebrado em 7 de março de 2013. Disponível: http://www.campogrande.ms.gov.br/seges/wp-content/uploads/sites/37/2017/01/20130401154027.pdf. Acesso: 23 jan. 2020.

CAMPO GRANDE. Decreto n. 12.680, de 9 de julho de 2015. Diário Oficial de Campo Grande, DIOGRANDE n. 4.313. Campo Grande, MS, 10 jul. 2015.

CAMPO GRANDE. Decreto n. 8.265, de 27 de julho de 2001. Campo Grande, 2001.

CAPOANE, V.; SILVA, D.A. Avaliação de parâmetros geomorfométricos derivados de modelos altimétricos de diferentes fontes e resoluções: estudo de caso da bacia hidrográfica do córrego Lajeado, Campo Grande, MS. Revista Brasileira de Geografia Física, v. 13, n. 2, p. 674-690, 2020.

CAPOANE, V. Implicações da resolução e fonte de modelos altimétricos na análise quantitativa de atributos geomorfométricos para bacia hidrográfica do córrego Guariroba, Campo Grande, MS. Revista Brasileira de Geografia Física, v. 13, n. 5, p. 2417-2432, 2020.

CAPOANE, V.; COSTA, L.F.F.; KUPLICH, T.M. Efeito da resolução de modelos digitais de elevação na derivação do índice topográfico de umidade: estudo de caso no município de Palmitinho-RS. Geografia em Questão, v. 10, p. 9-23, 2017.

CEMTEC. Centro de Monitoramento do Tempo e do Clima de MS. Banco de dados 2021. Disponível em: https://www.cemtec.ms.gov.br/boletins-meteorologicos/ Acesso: 10 fev. 2022.

CSI-CGIAR. Consortium for Spatial Information - Consultative Group on International Agricultural Research. SRTM 90 m Digital Elevation Database v. 4.1. Disponível: http://srtm.csi.cgiar.org/srtmdata/. Acesso: 20 fev. 2020.

DAI, W. et al. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. Catena, v. 177, p. 114-125, 2019.

DSI. Divisão de Sensoriamento Remoto - INPE. 2008. Topodata: Projeto de dados geomorfométricos do Brasil. Disponível: http://www.dsr.inpe.br/topodata/acesso.php. Acesso: fev. 2020.

GARBRECHT, J. et al. and distributed watershed models: I, Data coverages and sources, Journal of Hydrologic Engineering, v. 6, p. 506-514, 2001.

HAYASHI, M.; VAN DER KAMP, G. Simple equations to represent the volume-area-depth relations of shallow wetlands in small topographic depressions. Journal of Hydrology, v. 237, p. 74-85, 2000.

HIRT, C. Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sensing of Environment, v. 207, p. 27-41, mar. 2018.

HUTCHINSON, M. F. A new procedure for gridding elevation and streamlines data with automatic removal of spurious pits. Journal of Hydrology, v. 106, n. 3-4, p. 211-232, 1989.

HUTCHINSON, M.F.; XU, T.; STEIN, J.A. Recent progress in the ANUDEM elevation gridding procedure. Geomorphometry, 19-22, 2011.

IBGE. Instituto Brasileiro de Geografia e Estatística. Bases cartográficas contínuas – Brasil, 2021. Disponível em: Index of / (ibge.gov.br). Acesso: 10 jan. 2022.

JENSON, S.; DOMINGUE, J.O. Extracting topographic structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Eng. Remote Sensing, v. 54, n. 11, p. 1593-1600, 1988.

JSS. Japan Space Systems. 2020. ASTER Global Digital Elevation Model (ASTER GDEM), version 3. Disponível: https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/. Acesso: 20 fev. 2020.

KIRKBY, M.; CHORLEY. R. Throughflow, overland flow and erosion. International Association of Scientific Hydrology Bulletin, v. 12, n. 3, p. 5-21, 1967.

LECOURS, V. et al. Influence of artefacts in marine digital terrain models on habitat maps and species distribution models: a multiscale assessment. Remote Sensing in Ecology and Conservation, v. 3, n. 4, p. 232-247, 2017.

LEPSCH, I.F. et al. Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Viçosa: SBCC, 2015.

LI, A.; ZHANG, J. X. C.; LIU, B. Effects of DEM resolutions on soil erosion prediction using Chinese Soil Loss Equation. Geomorphology, v. 384, p. 1-15 (107706), 2021.

LI, J.; WONG, D. W. S. Effects of DEM sources on hydrologic applications. Computers Environment and Urban Systems, v. 34, p. 251-261, 2010.

LIFFNER, J.W.; HEWA, G. A.; PEEL, M. C. The sensitivity of catchment hypsometry and hypsometric properties to DEM resolution and polynomial order. Geomorphology, v. 309, p. 112-120, 2018.

LINDSAY, J. B.; CREED, I. F. Removal of artifact depressions from digital elevation models: towards a minimum impact approach. Hydrological Processes, v. 19, n. 16, p. 3113-3126, 2005.

LÓPEZ-VICENTE, M.; ÁLVAREZ, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surface Processes and Landforms, v. 43, n. 7, p.1403-1415, 2018.

MARTZ, L. W.; GARBRECHT J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM. Computers & Geosciences, v. 25, p. 835-844, 1999.

MASHIMBYE, Z.A.; CLERCQ, W. P.; VAN NIEKERK, A. Assessing the influence of DEM source on derived streamline and catchment boundary accuracy. Water AS, v. 45, n. 4, p. 672-684, 2019.

McMASTER, K. J. Effects of digital elevation model resolution on derived stream network positions. Water Resources Research, v. 38, n. 4, p. 1-8 (1042), 2002.

MONTGOMERY, D. R.; DIETRICH, W.E. Channel initiation and the problem of landscape scale. Science, v. 255, p. 826-830, 1992.

MOORE, I. D. et al. Band, GIS and land-surface-subsurface process modeling. In: Goodchild, B.P., Steyaert, L. (Ed.). Environmental Modeling With GIS. New York: Oxford Univ. Press, 1993. p. 196-230.

O’CALLAGHAN, J.F.; MARK, D.M. The extraction of drainage networks from digital elevation data. Computer Vision, Graphic and Image Processing, v. 28, p. 328–344, 1984.

PAIN, C.F. Size Does Matter: Relationships Between Image Pixel Size and Landscape Process Scales. In: International Congress of Modelling and Simulation, Proceedings of the MODSIM, Sydney, Australia, 12–15 December 2005. p. 1430-1436. Disponível: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.3239&rep=rep1&type=pdf

PIKE, R.J.; EVANS, I.S.; HENGL, T. Geomorphometry: a brief guide. Developments in Soil Science, v. 33, p. 3-30, 2009.

PLANURB. Agência Municipal de Meio Ambiente e Planejamento Urbano. 2020. Carta Geotécnica: revisão e atualização. Disponível: http://www.campogrande.ms.gov.br/planurb/carta-geotecnica/. Acesso: 10 fev. 2021.

________. 2021a. Plano de Manejo da Apa do Ceroula – Produto V – Versão Final. Disponível: http://www.campogrande.ms.gov.br/planurb/downloads/plano-de-manejo-area-de-protecao-ambiental-dos-mananciais-do-corrego-guariroba-apa-do-guariroba-1a-revisao/. Acesso: 10 jun. 2021.

________. 2021b. Plano de Manejo Área de Proteção Ambiental dos Mananciais do Córrego Guariroba – Apa do Guariroba – Revisão. Disponível: http://www.campogrande.ms.gov.br/planurb/downloads/plano-de-manejo-da-apa-do-ceroula-produto-v-versao-final/. Acesso: 10 jun. 2021.

POLIDORI, L.; EL HAGE, M. Digital Elevation Model quality assessment methods: a critical review. Remote Sensing, v. 12, n. 21, p. 1-36 (3522), 2020.

RAMPI, L. P.; KNIGHT, J. F.; LENHART, C. F. Comparison of Flow Direction Algorithms in the Application of the CTI for Mapping Wetlands in Minnesota. Wetlands, v. 34, n. 3, p. 513-525, 2014.

REDDY, A. S.; REDDY, M. J. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT. Journal of Earth System Science, v. 124, n. 7, p. 1517-1529, 2015.

REUTER, H. I. et al. Preparation of DEMs for geomorphometric analysis. Developments in Soil Science, v. 33, p. 87-120, 2009.

ROCHA, L. et al. 2020. The importance of high resolution digital elevation models for improved hydrological simulations of a Mediterranean forested catchment. Remote Sensing, 12, n. 20, p. 1-17 (3287), 2020.

ROSS, J. L. S. et al. 2019. Macroformas do relevo da América do Sul. Revista do Departamento de Geografia, v. 38, p.58-69, 2019.

SAHOO, R.; JAIN, V. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computers & Geosciences, v. 111, p.78-86, 2018.

SEMADUR. Secretaria Municipal de Meio Ambiente e Desenvolvimento Urbano. 2020. Arquivos vetoriais. Disponível: http://www.campogrande.ms.gov.br/semadur/arquivos-vetoriais-de-campo-grande/ e http://portal.capital.ms.gov.br/semadur/canaisTexto?id_can=5951 Acesso: 23 jan. 2020.

SØRENSEN, R.; SEIBERT, J. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, v. 347, n. 1-2, p. 79-89, 2007.

TAN, M. L. et al. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated steamflow. Applied Geography, v. 63, p. 357-368, set. 2015.

TAN, M. L.; RAMLI, H. P.; TAM, T. H. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, v. 32, p.1-18, 2018.

TARBOTON, D. G. A new method for the determination of flow directions and upslope areas in griddigital elevation models. Water Resources Research, v. 33, n. 2, p. 309-319, 1997.

THOMPSON, J. A.; BELL, J. C.; BUTLER, C. A. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma, v. 100, n. 1-2, p. 67-89, 2001.

USGS. United States Geological Survey. Digital Elevation, SRTM, 1 Arc-Second Global. Disponível: https://earthexplorer.usgs.gov/. Acesso: 23 jan. 2020.

VALERIANO, M. M.; ROSSETTI, D. F. Topodata: Seleção de Coeficientes Geoestatísticos para Refinamento Unificado de Dados SRTM. INPE16701-RPQ/853. São José dos Campos: INPE, 2010.

VAZE, J.; TENG, J.; SPENCER, G. Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling & Software, v. 25, n. 10, p. 1086-1098, 2010.

WECHSLER, S.P. Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrology and Earth System Sciences, v. 11, n. 4, p. 1081-1500, 2007.

WOODROW, K.; LINDSAY, J.; BERG, A. A. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of Hydrology, v. 540, p. 1022-1029, 2016.

WU, S.; LI, J.; HUANG, G. H. A study on DEM-derived topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Applied Geography, v. 28, n. 3, p. 210-223, jul. 2008.

ZHANG, P. et al. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Research, v. 53, p. 132-144, 2014.

ZHANG, W.; MONTGOMERY, D.R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, v. 30, n. 4, p. 1019-1028, abr. 1994.

Published

2022-07-20

How to Cite

Capoane, V. (2022). SENSITIVITY OF DRAINAGE MORPHOMETRY AND TOPOGRAPHIC ATTRIBUTES TO THE SOURCE AND SPATIAL RESOLUTION OF DSM AND DEM. GeoTextos, 18(1). https://doi.org/10.9771/geo.v18i1.48267

Issue

Section

Artigos