Nanocompósitos para a Adsorção de Fármacos: estudo e monitoramento tecnológico

Autores

DOI:

https://doi.org/10.9771/cp.v16i4.50649

Palavras-chave:

ZIF-8@ZIF-67, Adsorvente, Clorexidina.

Resumo

A presença de compostos farmacêuticos tem sido amplamente detectada em águas e efluentes devido, principalmente, ao aumento na sua produção e no consumo. A grande demanda mundial por baixo impacto ambiental, combinada à necessidade crescente de processos de água e esgoto mais eficientes e competitivos, uma vez que os tratamentos convencionais não são capazes de remover totalmente esses microcontaminantes, tem motivado a busca de tecnologias mais eficientes, como adsorção, além da utilização da nanotecnologia, por exemplo, os nanoadsorventes. Este artigo aborda um estudo e monitoramento tecnológico da produção de nanocompósitos para a adsorção de fármacos, usando patentes como fontes de informação. Para levantamento dos dados foi utilizada a plataforma Questel Orbit®, aplicando como entrada as palavras-chave para as buscas “composite”, “adsorption”, “drugs”. Os resultados da prospecção de patentes indicaram que as universidades e as instituições de pesquisa chinesas possuem a maior parcela de patentes depositadas e entre as tecnologias relacionadas aos nanocompósitos os métodos de síntese e sua aplicação em membranas e na catálise foram as que mais se destacaram.

Downloads

Não há dados estatísticos.

Biografia do Autor

Meiry Gláucia Freire Rodrigues, Universidade Federal de Campina Grande

Doutorado en Chimie, Université de Poitiers, France, em 1996.

Francisco Alex de Sousa Silva, Universidade Federal de Campina Grande

Graduando em Engenharia Química pela UFCG.

Valdirio Alexandre Gadelha Segundo, Universidade Federal de Campina Grande

Graduação em Engenharia Química pela UFCG.

Priscila Rodrigues Moreira Villarim, Instituto Federal de Educação Ciência e Tecnologia da Paraíba

Mestrado em Propriedade Intelectual e Transferência de Tecnologia para Inovação em 2023.

Referências

ALMEIDA, G. A.; WEBER, R. R. Fármacos na Represa Billings. Revista Saúde e Ambiente, [s.l.], v. 6, n. 2, p. 7-13, 2005.

ANVISA – AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. 2004. Disponível em: https://bvsms.saude.gov.br. Acesso em: 17 maio 2023.

ANDREWS, R. C. Membrane Processes: advancements for drinking water treatment. Canadian Water Network, [s.l.], v. 5, 2015. Disponível em: http://www.cwn-rce.ca/assets/End-User- Reports/Municipal/Andrews/CWN-EN-Andrews-2015-5Pager-Web.pdf. Acesso em: 17 jan. 2022.

BARBOSA, T. S. B. et al. Oil removal from oil/water emulsion by Zeolitic Imidazolate

Framework-8 (ZIF-8): A study of pH, and adsorption kinetic. Research, Society and

Development, [s.l.], v. 10, p. e444101422162, 2021. DOI: http://dx.doi.org/10.33448/rsd-v10i14.22162.

BASTOS, V. D.; FRENKEL, J. Resultados paradoxais da política de inovação no Brasil. Revista do BNDES, [s.l.], v. 47, p. 359-431, 2017.

CARTLIDGE, S.; NISSEN, H. U.; WESSICKEN, R. Ternary mesoporous structure of ultrastable zeolite CSZ-1. Zeolites, [s.l.], v. 9, p. 346-349, 1989. DOI: https://doi.org/10.1016/0144-2449(89)90083-3.

CORMA, A.; NAVARRO, M. T.; PARIENTE, J. P. Synthesis of an Ultralarge Pore Titanium Silicate lsomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons. Journal of the Chemical Society, [s.l.], v. 2, p. 147-148, 1994. DOI: https://doi.org/10.1039/C39940000147

COTRIM, M. E. B. et al. Qualidade ecológica da Represa Guarapiranga: água e sedimentos superficiais: multitraçadores ambientais – metais, elementos-traço, interferentes endócrinos, HPAs e fármacos. In: BICUDO, C. E. M.; BICUDO, D. C. (org.). 100 anos da Represa Guarapiranga. [S.l.]: Editora CRV, 2017. p. 309-382.

CPDB – CARCINOGENIC POTENCY DATABASE. The Carcinogenic Potency Project. 2011. Disponível em: http://potency.berkeley.edu. Acesso em: 17 maio 2022.

DAMSTRA, T. et al. (ed.) Global assessment of the state-of-the-science of endocrine disruptors. [S.l.]: World Health Organization (WHO); International Labour Organization (ILO); United Nations Environment Programme (UNEP), 2011. Disponível em: www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/. Acesso em: 18 maio 2022.

DEBLONDE, T.; COSSU-LEGUILLE, C.; HARTEMANN, P. Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, [s.l.], v. 214, n. 6, p. 442-448, 2011. DOI: https://doi/ 10.1016/j.ijheh.2011.08.002.

FERREIRA, H. S.; RANGEL, M. C. Nanotecnologia: aspectos gerais e potencial de aplicação em catálise. Química Nova, [s.l.], v. 32, n. 7, p. 1.860-1.870, 2009.

FILHO, S. A.; BACKX, B. P. Nanotecnologia e seus impactos na sociedade. Revista Tecnologia Sociedade, [s.l.], v.16, p. 1-15, 2020.

FURUKAWA, H. et al. The chemistry an application of metal-organic frameworks. Science, [s.l.], v. 341, p. 1230444, 2013. DOI: https://doi/10.1126/science.1230444.

GAVRILESCU, M. et al. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, [s.l.], v. 32, n. 1, p.147-156, 2015. DOI: https://doi.org/10.1016/j.nbt.2014.01.001.

GEISSEN, V. et al. Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, [s.l.], v. 3, n. 1, p. 57-65, 2015. DOI; https://doi.org/10.1016/j.iswcr.2015.03.002.

GHAFFAR, I. et al. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Material Science Engineering, [s.l.], v. 105, p. 110-111. 2019. DOI; https://doi.org/10.1016/j.msec.2019.110111.

HEBERER, T. Occurrence, fate, and removal of pharmaceuticals residues in the aquatic

environment: a review of recent research data. Toxicology Letters, [s.l.], v. 131, n. 1-2, p. 5-17, 2002. DOI: https://doi.org/10.1016/s0378-4274(02)00041-3.

HUCK, P. M. et al. Optimizing Filtration in Biological Filters. Denver: American Water Works Association Research Foundation (AWWA), 2000. 268p.

INGLEZAKIS, V. J. Adsorption, Ion Exchange and Catalysis. Elsevier Science, [s.l.], p. 614, 2006.

JACANGELO, J. G.; TRUSSELL, R. R.; WATSON, M. Role of membrane technology in drinking water treatment in the Unites States. Desalination, [s.l.], v. 113, n. 2-3, p. 119-127, 1997. DOI: https://doi.org/10.1016/S0011-9164(97)00120-3.

JONES, O. A.; LESTER, J. N.; VOULVOULIS, N. Pharmaceuticals: a threat to drinking water? Trends in Biotechnology, [s.l.], v. 23, n. 4, p. 163-167, 2005. DOI: https://doi.org/10.1016/j.tibtech.2005.02.001.

KLAVARIOTI, M.; MANTZAVINOS, D.; KASSINOS, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environmental International, [s.l.], v. 35, n. 2, p. 402-417, 2009. DOI: https://doi.org/10.1016/j.envint.2008.07.009.

LEE, W. et al. Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs. ACS Applied Material Interfaces, [s.l.], v. 7, p. 18.353-18.361, 2015. DOI: https://doi.org/10.1021/acsami.5b04217.

LIN, K. Y. A.; CHEN, Y. C.; PHATTARAPATTAMAWONG, S. Efficient demulsification of

oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil

droplets from water. Journal of Colloid and Interface Science, [s.l.], v. 478, p. 97-106, 2016. DOI: https://doi.org/10.1016/j.jcis.2016.05.057.

MCNEFF, G.; SCHMIDT, W.; QUINN, B. Pharmaceuticals in the aquatic environment: a short summary of current knowledge and the potential impacts on aquatic biota and humans. EPA Research Report n. 142. EPA Research Programme 2014-2020, 2015. 43p.

MONTAGNER, C. C.; VIDAL, C.; ACAYABA, R. D. Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova, [s.l.], v. 40, p. 1.094-1.110, 2017. DOI; http://dx.doi.org/10.21577/0100-4042.20170091.

ONG, T. T. X.; BLANCH, E. W.; JONES, O. A. H. Predicted environmental concentration and fate of the top 10 most dispensed Australian prescription pharmaceuticals. Environmental Science and Pollution Research, [s.l.], v. 25, n. 11, p. 10.966-10.976, 2018. DOI: https://doi.org/10.1007/s11356-018-1343-5.

OWEN, D. M. et al. Removal of DBP precursors by GAC adsorption. [S.l.]: American Water Works Association Research Foundation (AWWA), 1998. 248 p.

PARK, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, [s.l.], v. 103, 2006.

PETRIE, B.; BARDEN, R.; KASPRZYK-HORDERN, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, [s.l.], v. 72, p. 3-27, 2015. DOI: https://doi.org/10.1016/j.watres.2014.08.053.

PROKHORENKOV, D.; PANFILOV, P. Discovery of technology trends from patent data on the basis of predictive analytics. IEEE Computer Society (Research-in-Progress Papers and Workshop Papers), [s.l.], v. 2, 2018.

RASHED, M. N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Organic Pollutants – Monitoring. Risk and Treatment, [s.l.], p. 167-194, 2013. DOI: https://doi.org/10.5772/54048.

RIVERA-UTRILLA, J. et al. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, [s.l.], v. 93, n. 7, p. 1.268-1.287, 2013. DOI: https://doi.org/ 10.1016/j.chemosphere.2013.07.059.

RODRIGUES, D. P. A. et al. Zeolitic Imidazolate Framework-8 Nanoparticles for Rhodamine B Adsorption. Current Nanomaterials, [s.l.], v. 5, p. 1-8, 2020. DOI: https://doi.org/ 10.2174/246818731099920112009114.

RODRIGUES, M. G. F.; BARBOSA, T. L. A.; RODRIGUES, D. P. A. Zinc imidazolate

framework-8 nanoparticle application in oil removal from oil/water emulsion and reuse.

Journal of Nanoparticle Research, [s.l.], v. 22, p. 1-15, 2020. DOI: https://doi.org/10.1007/s11051-020-05036-w.

ROSI, N. L. et al. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, [s.l.], v. 300 n. 5.622, p. 1.127-1.129, 2003. DOI: https://doi.org/10.1126/science.1083440.

RUTHVEN, D. M. Principles of adsorption and adsorption processes. [S.l.]: John Wiley & Sons, 1984.

SCHWARZENBACH, R. P. et al. The challenge of micropollutants in aquatic systems. Science, [s.l.], v. 313, n. 5.790, p. 1.072-1.077, 2006. DOI: https://doi.org/10.1126/science.1127291.

SANTIRSO, M. V. L. Em meio à pandemia, a economia chinesa é a vencedora no jogo do tabuleiro econômico mundial. El País, [s.l.], 27 Sept. 2020.

SHARMIN, E.; ZAFAR, F. Introductory Chapter: Metal Organic Frameworks (MOFs). Semantics Scholar, [s.l.], cap. 1. p. 3-16, 2016.

SHEN, K. et al. Ordered macro-microporous metalorganic framework single crystals. Science, [s.l.], v. 359, p. 206-210, 2018. DOI: https://doi.org/10.1126/science.aao3403.

SINDUSFARMA. Perfil da Indústria Farmacêutica. Relatório Anual. 2021. Disponível em: sindusfarma.org.br/uploads/files/229d-gerson-almeida/Publicacoes_PPTs. Acesso em: 2 maio 2022.

SONG, X. et al. Synthesis of magnetic nanocomposite Fe3O4@ZIF-8@ZIF-67 and removal of tetracycline in water. Environmental Science and Pollution Research, [s.l.], v. 29, p. 35.204-35.216, 2014. DOI: https://doi.org/10.21203/rs.3.rs-718590/v1.

THOMAIDI, V. S. et al. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in tread domestic wastewater? Greece as a case-study. Journal of Hazardous Materials, [s.l.], v. 283, p. 740-747, 2015. DOI: https://doi.org/10.1016/j.jhazmat.2014.10.023.

TUNDISI, J. G. Recursos hídricos no Brasil: Problemas, Desafios e Estratégias para o Futuro, Rio de Janeiro. Academia Brasileira de Ciências, [s.l.], p. 76, 2014.

VALUVA, V. M. et al. Sorption, photodegradation, and chemical transformation of naproxen

and ibuprofen in soils and water. Science of the Total Environment, [s.l.], v. 565, p. 1.063-1.070, 2016. DOI: http://dx.doi.org/10.1016/j.scitotenv.2016.05.132.

VASQUEZ, M. I. et al. Environmental side effects of pharmaceutical cocktails: What we know and what we should know. Journal of Hazardous Materials, [s.l.], v. 279, p. 169-189, 2014. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.06.069.

ZHANG, J. et al. Novel and Facile Strategy for Controllable Synthesis of Multilayered Core-Shell Zeolitic Imidazolate Frameworks. Crystal Growth and Design, [s.l.], v. 16, p. 6.494-6.498, 2016. DOI: https://doi.org/10.1021/acs.cgd.6b01161

ZHANG, Y. et al. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, [s.l.], v. 8, p. 9.597-9.604, 2018. DOI: https://doi.org/10.1038/s41598-018-28015-7.

Downloads

Publicado

2023-05-26

Como Citar

Rodrigues, M. G. F. ., Silva, F. A. de S., Segundo, V. A. G. ., & Villarim, P. R. M. (2023). Nanocompósitos para a Adsorção de Fármacos: estudo e monitoramento tecnológico. Cadernos De Prospecção, 16(4), 1108–1124. https://doi.org/10.9771/cp.v16i4.50649