Bioprocessos de Co-Cultivo Microbiano: Avaliação Tecnológica de Patentes

Autores

  • Plínio Ribeiro Rodrigues Universidade Federal da Bahia, Salvador, BA, Brasil https://orcid.org/0000-0002-6652-5470
  • Sânzio Brandolle Santana Gonçalves Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil https://orcid.org/0000-0002-0966-1935
  • Janice Izabel Druzian Universidade Federal da Bahia, Salvador, BA, Brasil

DOI:

https://doi.org/10.9771/cp.v12i4.27595

Palavras-chave:

Co-cultura, Bioprocessos, Modelagem.

Resumo

Este estudo apresenta uma investigação de patentes para detecção de tendências tecnológicas e de mercado em bioprocessos e síntese de bioprodutos utilizando mais de uma cultura microbiana no meio de cultivo. Patentes de 1909 a 2017 foram coletadas e uma função sigmoide de dois estágios foi ajustada com sucesso (R2 = 0,997) para modelar os documentos prospectados, contribuindo para melhor compreensão do estágio de desenvolvimento da técnica avaliada. Foram encontradas 632 patentes diferentes, publicadas principalmente nos Estados Unidos e China. O setor empresarial foi responsável pelo desenvolvimento de 50% das invenções. O desenvolvimento da técnica está aumentando rapidamente após um período de crescimento lento (1909 a 1997), impulsionado, principalmente, por indústrias de produção de químicos de base biológica e biocombustíveis. O uso de microrganismos no cocultivo em bioprocessos e síntese de bioprodutos revelou alto potencial.

Downloads

Não há dados estatísticos.

Referências

BOWERS, D. F.; ALLRED, J. B. Advances in molecular biology: Implications for the future of clinical nutrition practice. Journal of the American Dietetic Association, [S.l.], v. 95, n. 1, p. 53-59, 1995.

CANTÚ, S. O.; ZAPATA, A. R. P. ¿Qué es la Gestión de la Innovación y la Tecnología (GInnT)? Journal of Technology Management & Innovation, [S.l.], v. 1, n. 2, p. 64-82, 2006.

CARRILLO, M.; GONZALEZ, J. M. A. New Approach to Modelling Sigmoidal Curves. Technological Forecasting and Social Change, [S.l.], v. 69, n. 3, p. 233-241, 2002.

CHARPENTIER, J. C. Among the trends for a modern chemical engineering, the third paradigm: The time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chemical Engineering Research and Design, [S.l.], v. 88, n. 3, p. 248-254, 2010.

CHEIRSILP, B.; KITCHA, S.; TORPEE, S. Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Annals of Microbiology, [S.l.], v. 62, n. 3, p. 987-993, 2012.

COLTON, C. K. Implantable biohybrid artificial organs. Cell Transplantation, [S.l.], v. 4, n. 4, p. 415-436, 1995.

COUTINHO, P.; BOMTEMPO, J. V. Roadmap Tecnológico em Matérias-Primas Renováveis: uma Base para a Construção de Políticas e Estratégias no Brasil. Química Nova, [S.l.], v. 34, n. 5, p. 910-916, 2011.

ENRÍQUEZ-DE-SALAMANCA, A. et al. Environmental impacts of climate change adaptation. Environmental Impact Assessment Review, [S.l.], v. 64, p. 87-96, 2017.

ESPACENET. [Base de dados – Internet]. European Patent Office. 2018. Disponível em: https://worldwide.espacenet.com/. Acesso em: 28 jun. 2018.

EUROPIAN COMISSION. Improving knowledge transfer between research institutions and industry across Europe: embracing open innovation. Luxembourg: Office for Official Publications of the European Communities 2007. 36 p.

GARCÍA-SERNA, J.; PEREZ-BARRIGÓN, L.; COCERO, M. J. New trends for design towards sustainability in chemical engineering. Chemical Engineering Journal, [S.l.], v. 133, n. 1-3, p. 7-30, 2007.

GRUEBER, M.; STUDT, T. 2014 Global R&D Funding Forecast. Battelle, Columbus, 2013.

HESSELTINE, C. W. Mixed-Culture Fermentations. In: RUSKIN, F. R. (ed.). Applications of biotechnology to traditional fermented foods. Washington: National Academy Press, 1992. p. 52-57.

HUANG, L. et al. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy. Bioresource Technology, [S.l.], v. 241, p. 802-811, 2017.

HUNKAPILLER, M. W. Advances in DNA sequencing technology. Current Opinion in Genetics & Development, [S.l.], v. 1, n. 1, p. 88-92, 1991.

KONDO, T.; KONDO, M. Efficient production of acetic acid from glucose in a mixed culture of Zymomonas mobilis and Acetobacter sp. Journal of Fermentation and Bioengineering, [S.l.], v. 81, n. 1, p. 42-46, 1996.

LIU, S. Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design. New York: Elsevier, 2017.

MARINAKIS, Y. D. Forecasting technology diffusion with the Richards model. Technological Forecasting and Social Change, [S.l.], v. 79, n. 1, p. 172-179, 2012.

MONCADA, J.; ARISTIZÁBAL, V.; CARDONA, C. A. Design strategies for sustainable biorefineries. Biochemical Engineering Journal, [S.l.], v. 116, p. 122-134, 2016.

NAI, C.; MEYER, V. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends in Microbiology, [S.l.], v. 26, n. 6, p. 538-554, 2018.

NSB – NATIONAL SCIENCE BOARD. Science and Engineering Indicators 2016. National Science Foundation, Arlington, 2016.

OECD – ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. Key biotechnology indicators. [2015]. Disponível em: http://www.oecd.org/sti/inno/keybiotechnologyindicators.htm. Acesso em: 23 jul. 2018.

PADHI, S. et al. ITS2 RNA secondary structure analysis reveals close affinity between endophytic and pathogenic fungi: A case study in Fusarium species. Annals of Microbiology, [S.l.], v. 66, n. 2, p. 625-633, 2016.

RAO, A.; SATHIAVELU, A.; MYTHILI, S.; Genetic engineering in biobutanol production and tolerance. Brazilian Archives of Biology and Technology, [S.l.], v. 59, p. 1-14, 2016.

ROSSETTI, I. E.; COMPAGNONI, M. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry. Chemical Engineering Journal, [S.l.], v. 296, p. 56-70, 2016.

SERNA, F.; BARRERA, L.; MONTIEL, H. Impacto social y económico en el uso de biocombustibles. Journal of Technology Management & Innovation, [S.l.], v. 6, n. 1, p. 100-114, 2011.

SINDHU, R. et al. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Archives of Biology and Technology, [S.l.], v. 54, n. 4, p. 783-794, 2011.

SPAROVEK, G. et al. Sustainable bioproducts in Brazil: disputes and agreements on a common ground agenda for agriculture and nature protection. Biofuels, Bioproducts and Biorefining, [S.l.], v. 10, p. 204–221, 2016.

STANBURY, P. F.; WHITAKER, A.; HALL, S. J. Principles of Fermatation Tecnology. Burlington: Butterworth-Heinemann, 1995.

UN – UNITED NATIONS. Revision of World Population Prospects, UN, 2015. Disponível em: https://esa.un.org/unpd/wpp/. Acesso em: 10 abr. 2018.

VILLARREAL-CHIU, J. F.; ARÉCHIGA-CARVAJAL, E. T. Biodegradation kinetic rates of diesel-contaminated sandy soil samples by two different microbial consortia. Annals of Microbiology, [S.l.], v. 66, n. 1, p. 197-206, 2016.

WAGNERA, J. M.; ALPERAB, H. S. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genetics and Biology, [S.l.], v. 89, p. 126-136, 2016.

YIN, Q. et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. Journal of Environmental Sciences, [S.l.], v. 42, p. 210-214, 2016.

ZHANG, H. et al. Where will China's real estate market go under the economy's new normal? Cities, [S.l.], v. 55, p. 42-48, 2016.

Downloads

Publicado

2019-12-28

Como Citar

Rodrigues, P. R., Gonçalves, S. B. S., & Druzian, J. I. (2019). Bioprocessos de Co-Cultivo Microbiano: Avaliação Tecnológica de Patentes. Cadernos De Prospecção, 12(4), 878. https://doi.org/10.9771/cp.v12i4.27595

Edição

Seção

Prospecções Tecnológicas de Assuntos Específicos