Aproveitamento da Biomassa Lignocelulósica para Produção de Metil levulinato: mapeamento tecnológico de patentes

Autores

DOI:

https://doi.org/10.9771/cp.v16i3.49964

Palavras-chave:

Prospecção Tecnológica, Ésteres levulínicos, Valorização da biomassa.

Resumo

O Metil levulinato (ML) trata-se de um éster do Ácido levulínico (AL) que entrou na agenda econômica mundial devido ao seu potencial como combustível e aditivo para biocombustíveis. O presente estudo teve como objetivo mapear as patentes que abordam a tecnologia da valorização da biomassa lignocelulósica para produção do éster levulínico. O trabalho foi realizado por meio de consultas na base de dados nacional, o INPI, e em bases internacionais como DII, OMPI, Espacenet e Google Patents, no período de 1990 a junho de 2022. Desde 2005, ocorrem publicações anuais, com enfoque na área da química (catálise e desenvolvimento de compostos heterocíclicos, acíclicos ou carboxílicos) e redução da emissão de gases do efeito estufa. As perspectivas futuras indicam o interesse dessa tecnologia para a indústria. Os desafios tecnológicos da síntese do ML estão voltados para as condições suaves de reação, catalisadores híbridos e novas rotas. Já para seu uso como precursor, destacam-se a produção de plastificantes, de resinas e de gama-Valerolactona.

Downloads

Não há dados estatísticos.

Biografia do Autor

Leonete Cristina de Araújo Ferreira Medeiros Silva, Universidade Federal Rural do Semiárido, Caraúbas, RN, Brasil

Professora  Assistente do Departamento de Engenharia da Universidade Federal Rural do Semi-Árido-UFERSA, Centro Multidisciplinar de Caraúbas;Doutoranda em Engenharia Química (UFRN, 2018-presente); Mestre em Engenharia Sanitária (UFRN, 2008); Engenheira de Segurança do Trabalho (UFRN, 2008); Engenheira Civil (UFRN, 2005); e Tecnóloga em Meio Ambiente (IFRN, 2002).

Poliana Pinheiro da Silva, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil

Doutoranda do Programa de Pós-graduação em Engenharia Química da UFRN. 

Eduardo Lins de Barros Neto, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil

Departamento de Engenharia Químida da Universidade Federal do Rio Grande do Norte (UFRN).

Referências

ALAM, M. I.; SAHA, B. Catalysis for the Production of Sustainable Chemicals and Fuels from Biomass. In: ALAM, M. I.; SAHA, B. Sustainable Catalytic Processes. [S.l.]: Elsevier, 2015. p. 99-123. DOI: https://doi.org/10.1016/B978-0-444-59567-6.00004-2.

AN, R. et al. Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe2(SO4)3. Journal of Energy Chemistry, [s.l.], v. 26, n. 3, p. 556-563, 2017. DOI: http://dx.doi.org/10.1016/j.jechem.2016.11.015.

ANDRADE, H. de S. et al. Técnicas de prospecção e maturidade tecnológica para suportar atividades de P & D. Espacios, [s.l.], v. 39, n. 8, 2018.

ANTUNES, A. M. de S. et al. Métodos de Prospecção Tecnológica, Inteligência Competitiva e Foresight: principais conceitos e técnicas. In: NÚBIA MOURA, R. (ed.). Prospecção tecnológica. 1. ed. Salvador, BA: IFBA, 2018. v. I, p. 194. Disponível em: http://www.profnit.org.br/pt/livros-profnit/. Acesso em: 15 jun. 2022

BANKOLE, K. S. Uncatalyzed esterification of biomass-derived carboxylic acids. 2011. 152 f. Tese (Doutorado em Engenharia Química em Bioquímica) – Universidade de Iowa, Iowa City, 2011. Disponível em: http://ir.uiowa.edu/etd/922. Acesso em: 15 jun. 2022.

BHAT, N. S.; MAL, S. S.; DUTTA, S. Recent advances in the preparation of levulinic esters from biomass-derived furanic and levulinic chemical platforms using heteropoly acid (HPA) catalysts. Molecular Catalysis, [s.l.], v. 505, p. 111484, December, 2021. DOI: https://doi.org/10.1016/j.mcat.2021.111484.

BOZELL, J. J.; PETERSEN, G. R. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chemistry, [s.l.], v. 12, p. 539-554, 2010. DOI: https://doi.org/10.1039/B922014C.

CARAHER, V. Short communication. World Patent Information, [s.l.], v. 30, n. 2, p. 150-152, 2008. DOI: https://doi.org/10.1016/j.wpi.2007.07.008.

CHANGCHUN; Yuan, W. et al. Continuous synthesis method and application of glycerol ketal methyl levulinate. Depositante: Zhengzhou University. CN113929654A. Depósito: 26 out. 2021. Concessão: 2 set. 2022.

CHEN, H. et al. Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol. Chemical Engineering Journal, [s.l.], v. 333, p. 434-442, set. 2018. DOI: https://doi.org/10.1016/j.cej.2017.09.180.

CLARIVATE ANALYTICS. Derwent Innovations Index. 2020. Disponível em: https://images.webofknowledge.com/WOKRS5132R4.2/help/pt_BR/DII/hp_database.html#dsy3748-TRS_chemical. Acesso em: 30 jun. 2022.

CLARIVATE ANALYTICS. Derwent Innovations Index on Web of Science. 2022. Disponível em: https://clarivate.com/webofsciencegroup/solutions/webofscience-derwent-innovation-index/. Acesso em: 30 jun. 2022.

COELHO, K. M.; BORSCHIVER, S. Roadmap Tecnológico Do Ácido Levulínico Produzido a Partir De Biomassa Lignocelulósica. Cadernos de Prospecção, Salvador, v. 9, n. 4, p. 481-192, 2016. Disponível em: https://doi.org/10.9771/cp.v9i4.17951.

CUNHA, G. J. A prospecção tecnológica a partir de bases de dados de patentes. Revista Panorâmica, [s.l.], v. 34, p. 302-313, set.-dez. 2021.

DAQIANG, C. Technology for preparing alcohol-based fuel by utilizing levulinic acid. Depositante: SUNACORE NEW ENERGY CO Ltd. CN108913225A. Depósito: 3 jul. 2018. Concessão: 8 dez. 2020.

DE SOUSA DIAS, A. S. V.; GRUTER, G. J. M.; VAN PUTTEN, R. J. Processo de conversão de matéria-prima contendo carboidratos. Depositante: FURANIX TECHNOLOGIES B.V. BR112013016122-1B1. Depósito: 28 dez. 2011. Concessão: 10 set. 2019.

DENG, W. et al. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids. Catalysis Today, [s.l.], v. 164, n. 1, p. 461-466, 2011. DOI: http://dx.doi.org/10.1016/j.cattod.2010.10.055.

DING, D. et al. Production of methyl levulinate from cellulose: Selectivity and mechanism study. Green Chemistry, [s.l.], v. 17, n. 7, p. 4.037-4.044, 2015. DOI: https://doi.org/10.1039/c5gc00440c.

DUAN, X.; ZHOU, Y.; SHI, J. Polyacid catalyst used in preparation of methyl levulinate, comprises keggin structure containing tungstophosphoric acid hydrate and SAPO-18. Depositante: Beihua University. CN112473736-A. Depósito: 4 dez. 2020. Concessão: 13 mar. 2021.

EPO – EUROPEAN PATENT OFFICE. Searching for patents. 2022. Disponível em: https://www.epo.org/searching-for-patents.html. Acesso em: 30 jun. 2022.

FENG, J. et al. Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. Bioresource Technology, [s.l.], v. 315, p. 123776, June, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.123776.

FERNANDO, S. et al. Biorefineries: Current status, challenges, and future direction. Energy and Fuels, [s.l.], v. 20, n. 4, p. 1.727-1.737, 2006. DOI: https://doi.org/10.1021/ef060097w.

FILICIOTTO, L. et al. Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catalysis Today, [s.l.], v. 302, p. 2-15, 2018. DOI: http://dx.doi.org/10.1016/j.cattod.2017.03.008.

GARCIA-ORTIZ, A. et al. Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem, [s.l.], v. 13, n. 4, p. 707-714, 2020. DOI: https://doi.org/10.1002/cssc.201903496.

GFBIOCHEMICALS. About US. 2022. Disponível em: http://www.gfbiochemicals.com/company/. Acesso em: 30 jun. 2022.

GOOGLE. Google Patents: Advanced search. 2022. Disponível em: https://patents.google.com/advanced. Acesso em: 30 jun. 2022.

GROVES, A. P. et al. Composição de combustível, uso de um levulinato de alquila c4-c8, métodos para reduzir atemperatura de separação de fase de uma composição de combustível, para operar um motor de igniçãopor compressão e/ou um veículo que seja motorizado por tal motor. Depositante: Shell Internationale Research Maatschappi. PI 0416356-7 A2. Depósito: 8 nov. 2004. Publicação: 13 mar. 2007.

HUNT, J. D. et al. Possible pathways for oil and gas companies in a sustainable future: from the perspective of a hydrogen economy. Renewable and Sustainable Energy Reviews, [s.l.], v. 160, p. 112-291, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S1364032122002106. Acesso em: 15 jun. 2022.

INPI – INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL. IPC/CPC. 2015. Disponível em: https://www.gov.br/inpi/pt-br/servicos/patentes/classificacao. Acesso em: 1º jun. 2022.

JIAN, G. W.; GANG, W. J. Method for preparing methyl levulinate by utilizing plant straws. China: 2011, 2009. Depositante: INNER MONGOLIA JINDI BIOMASS CO., LTD. CN102060704A. Depósito: 18 nov. 2009. Concessão: 8 jan. 2014.

JUNGMEIER, G. IEA Bioenergy 29th update. 2014. DOI 10.1016/s0961-9534(07)00106-7. Disponível em: https://www.ieabioenergy.com/wp-content/uploads/2014/09/IEA-Bioenergy-Task42-Biorefining-Brochure-SEP2014_LR.pdf. Acesso em: 15 jun. 2022.

KUPFER, D.; TIGRE, P. B. Modelo SENAI de Prospecção Documento Metodológico. 2004. Disponível em: https://www.oitcinterfor.org/sites/default/files/file_publicacion/papeles_14.pdf. Acesso em: 15 jun. 2022.

SUIB, S. L. et al. Preparation of mesoporous material for e.g. catalysts involves preparing acidic mixture by mixing metal precursors, interface modifier, hydrotropic or lyotropic ion precursor, and surfactant, aging acidic mixture, and heating. Depositante: University Of Connecticut. WO2014186207(A2,A3). Depósito: 8 maio 2014. Concessão: 29 out. 2015.

LAI, F. et al. Tungstophosphoric acid supported on metal/Si-pillared montmorillonite for conversion of biomass-derived carbohydrates into methyl levulinate. Journal of Cleaner Production, [s.l.], v. 314, p. 128072, April, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.128072.

LIANG, X.; FU, Y.; CHANG, J. Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst. Fuel, [s.l.], v. 259, p. 116-246, September, 2020. DOI: https://doi.org/10.1016/j.fuel.2019.116246.

LIMA, F. V. R. et al. Mapeamento tecnológico do cupuaçu (theobroma grandiflorum): um estudo dos depósitos de patentes no período de 1990 a 2015. In: RUSSO, S. L. et al. (ed.). Propriedade intelectual, tecnologias e empreendedorismo. 1. ed. Aracaju: Associação Acadêmica de Propriedade Intelectual, 2017. p. 337-350.

LIU, J. et al. Glucose conversion to methyl levulinate catalyzed by metal ion-exchanged montmorillonites. Applied Clay Science, [s.l.], v. 141, p. 118-124, 2017. DOI: https://doi.org/10.1016/j.clay.2017.02.017.

MAYERHOFF, Z. D. V. L. Uma Análise Sobre os Estudos de Prospecção Tecnológica. Cadernos de Prospecção, Salvador, v. 1, n. 1, p. 7-9, 2008. Disponível em: http://www.portalseer.ufba.br/index.php/nit/article/view/3538/2637%0Ahttp://ic.ufal.br/evento/cbie_laclo2015/eventos.html%0Ahttps://portalseer.ufba.br/index.php/nit/article/view/23039 Acesso em: 15 jun. 2022.

MO, Z. Preparing methyl levulinate from bio mass base comprises placing biomass in the first reactor, hydrolyzing, placing above product in second reactor, hydrolyzing and carrying out esterification of levulinic acid using methanol. Depositante: MO ZUYONG. CN107973709A. Depósito: 23 nov. 2017. Concessão: 1º maio 2018.

MOHAMMAD, A. H. et al. Gasoline composition comprises alkyl levulinate of methyl levulinate, ethyl levulinate, propyl levulinate, and/or butyl levulinate. IN201711008334(A). Índia: 2018. 2017.

NIJMEEIJER, A.; BOESTERT, J. L. W. C. de; HAAN, J. P. Processo para extração reativa melhorada com permeação de ácido levulínico. Brasil: 2010. 2006.

OMPI – ORGANIZAÇÃO MUNDIAL DA PROPRIEDADE INTELECTUAL. Patentscope: Advanced research. 2022. Disponível em: https://patentscope.wipo.int/search/pt/advancedSearch.jsf. Acesso em: 30 jun. 2022.

OPRESCU, E. E. et al. Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates. Renewable Energy, [s.l.], v. 176, p. 651-662, 2021. DOI: https://doi.org/10.1016/j.renene.2021.05.120.

PARANHOS, R. D. C. S.; RIBEIRO, N. M. Importância da Prospecção Tecnológica em Base em Patentes e seus Objetivos da Busca. Cadernos de Prospecção, Salvador, v. 11, n. 5, p. 1.274-1.292, 2018. DOI: https://doi.org/10.9771/cp.v12i5.28190.

PENG, L. et al. Effect of metal salts existence during the acid-catalyzed conversion of glucose in methanol medium. Catalysis Communications, [s.l.], v. 59, p. 10-13, 2015. DOI: http://dx.doi.org/10.1016/j.catcom.2014.09.028.

PILEIDIS, F. D.; TITIRICI, M. M. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, [s.l.], v. 9, n. 6, p. 562-582, 2016. DOI: https://doi.org/10.1002/cssc.201501405.

RAMLI, N. A. S.; ZAHARUDIN, N. H.; AMIN, N. A. S. Esterification of renewable levulinic acid to levulinate esters using amberlyst-15 as a solid acid catalyst. Jurnal Teknologi, [s.l.], v. 79, n. 1, p. 137-142, 2017. DOI: https://doi.org/10.11113/jt.v79.8095.

RASPOLLI GALLETTI, A. M. et al. Direct alcoholysis of carbohydrate precursors and real cellulosic biomasses to alkyl levulinates: A critical review. Catalysts, [s.l.], v. 10, n. 10, p. 1-2, 2020. DOI: https://doi.org/10.3390/catal10101221.

RIJKE, D. A et al. Making levulinic acid ester from composition comprising e.g. levulinic acid comprises subjecting composition to distillation and recovering residue comprising angelica lactone which is subjected to esterification reaction comprising alkanol. Depositante: Dsm Ip Assets B.V. WO2014087017-A1. Depósito: 9 dez. 2013. Concessão: 12 jun. 2014.

SANBORN, A.; HOWARD, S. Método de sintetização de hmf, método de preparação de ésteres de hmf, método de formação defdca, método de redução do éster de hmf, método de sintetização de hmf, método para a sintetizaçãode ésteres de citrato, método de sintetização de um ácido levulínico. PI 0819406-8 A2. Depósito: 12 dez. 2008. Concessão: 5 maio 2015.

SARAVANAMURUGAN, S.; RIISAGER, A. Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem, [s.l.], v. 5, n. 7, p. 1.754-1.757, 2013. DOI: https://doi.org/10.1002/cctc.201300006.

SELIFONOV, S. Aduções de derivados levulínicos com éstres de ácido graxo epoxidado e usos destes. Depositante: AROMAGEM CORPORATION, SERGEY SELIFONOV. BRPI0618938A2. Depósito: 22 nov. 2005. Concessão: 13 set. 2011.

SIGNORETTO, M. et al. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules, [s.l.], v. 24, n. 15, 2019. DOI: https://doi.org/10.3390/molecules24152760.

SIJBEN, J. M. F. et al. Processo para preparação de um derivado de furfural. Depositante: FURANIX TECHNOLOGIES B.V. BR 112017028433-2 B1. BR112017028433B1. Depósito: 1º jul. 2016. Concessão: 8 fev. 2022.

SILVA, L. C. d. A. F. M.; SILVA, P. P. da; BARROS NETO, E. L. de. Produção de ésteres levulínicos a partir da biomassa para aditivos em biocombustíveis: uma revisão sistemática. 2021. In: XXV WORKSHOP DO PRH44.1 EM PETRÓLEO, GÁS E BIOCOMBUSTÍVEIS [...]. Natal (RN): Núcleo de Ensino e Pesquisa em Petróleo e Gás (NUPEG), 2021. p. 27-28. Anais [...]. Natal, RN, 2021.

TIAN, G. et al. Method for preparing methyl levulinate from biomass saccharide by using acidified montmorillonite as catalyst. Depositante: Jilin University. CN104478718A. Depósito: 16 dez. 2014. Concessão: 1º abr. 2015.

UCHÔA, S. B. B.; SANTOS, J. P. L.; BALLIANO, T. L. Ferramentas para Análise e Tratamento dos Dados de Prospecção Tecnológica em Documentos de Patente. In: RIBEIRO, N. M. (ed.). Prospecção tecnológica. 1. ed. Salvador, BA: IFBA, 2019. v. II, p. 91-112. Disponível em: http://www.profnit.org.br/pt/livros-profnit/. Acesso em:15 jun. 2022.

WAAL, J. C. van der; JONG, E. de. Avantium chemicals: the high potential for the levulinic product tree. In: RODRIGUES, P. D. (ed.). Industrial biorenowables: a practical viewport. 1. ed. New Jersey: John Wiley & Sons, Inc., 2016. p. 97-120.

WEIYING, L. et al. Preparation method of gamma-valerolactone. Depositante: South China University of Technology SCUT. CN113816930A. Depósito: 9 set. 2021. Concessão: 21 dez. 2021.

WENSHENG, D. et al. Solid acid catalyst and application thereof in catalytically converting glucose to prepare methyl levulinate. Depositante: Shaanxi Normal University. CN104549200A. Depósito: 26 out. 2015. Concessão: 11 jan. 2017.

WENYU, L. et al. Preparation method of methyl levulinate by ion liquid catalysis. Depositante: Yancheng Teachers University. CN107935844A. CN107973709A. Depósito: 22 nov. 2017. Concessão: 19 fev. 2021.

XIANHAI, Z. et al. Method of preparing Nu-valerolactone from methyl levulinate. Depositante: Xiamen University. CN104829559A. Depósito: 29 maio 2015. Concessão: 8 mar. 2017.

XIAO, X. et al. Preparing methyl levulinate for guiding the biomass resource development, involves reacting sulfuric acid impregnated cellulose with methanol in ball milling to obtain methyl levulinic acid. Depositante: Application filed by China Agricultural University. CN106928066-A. Depósito: 27 mar. 2017. Concessão: 7 jul. 2017.

XU, Z. M.; LUO, J. Y.; HUANG, Y. B. Recent advances in the chemical valorization of cellulose and its derivatives into ester compounds. Green Chemistry, [s.l.], v. 24, n. 10, p. 3.895-3.921, 2022. DOI: https://doi.org/10.1039/d2gc00377e.

YANG, Y. et al. Transfer hydrogenation of methyl levulinate into gamma-valerolactone, 1,4-pentanediol, and 1-pentanol over Cu-ZrO2 catalyst under solvothermal conditions. Catalysis Communications, [s.l.], v. 76, p. 50-53, 2016. DOI: http://dx.doi.org/10.1016/j.catcom.2015.12.019.

YANLI, X. et al. Enzymatic Conversion of Biobased Levulinic Acid into an Alternative Biofuel Candidate – Methyl Levulinate. China Petroleum Processing and Petrochemical Technology, [s.l.], v. 22, n. 1, p. 8-16, 2020.

YAO, F.; CHUANG, L.; JING, G. Um diafragma PVDF tipo verde à base de óleo e seu método de preparação e aplicação. Depositante: University of Science and Technology of China USTC. CN114512771A. Depósito: 4 mar. 2022. Concessão: 17 maio 2022.

YAO, F. et al. Preparation method of gamma-valerolactone. Depositante: University of Science and Technology of China USTC. CN113896699A. Depósito: 21 out. 2021. Concessão: 7 jan. 2022.

ZAIHUI, F.; CHAO, Z.; FEIFEI, W. Carbohydrate and biomass derived functional carbon dot-metal hybrid catalytic material and application thereof. Depositante: Hunan Normal University. CN113546616A. Depósito: 13 jul. 2021. Concessão: 11 out. 2018.

ZHANMING, Z. et al. Method using furan to prepare methyl levulinate. CN107162900A. Depósito: 10 jul. 2017. Concessão: 23 jun. 2020.

ZHUANG, J. et al. Method for preparing methyl levulinate through clean conversion of biomass sugar and separating methyl levulinate. Depositante: UNIV SOUTH CHINA TECH. CN102399144A. Depósito: 26 set. 2011. Concessão: 4 abr. 2012.

ZUYONG, M. Method for preparing methyl levulinate from biomass. Depositante: MO ZUYONG. CN107973709A. Depósito: 23 nov. 2017. Concessão: 1º maio 2018.

Downloads

Publicado

2023-04-01

Como Citar

Silva, L. C. de A. F. M., Silva, P. P. da, & Barros Neto, . E. L. de. (2023). Aproveitamento da Biomassa Lignocelulósica para Produção de Metil levulinato: mapeamento tecnológico de patentes. Cadernos De Prospecção, 16(3), 726–744. https://doi.org/10.9771/cp.v16i3.49964

Edição

Seção

Prospecções Tecnológicas de Assuntos Específicos