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ABSTRACT. Inverse problems in Applied Geophysics are usually ill-posed. One way to reduce such 
deficiency is through derivative matrices, which are a particular case of a more general procedure called 
regularization. The regularization by derivative matrices has an input parameter called regularization 
parameter, usually denoted by λ, which choice is already a problem. It was suggested in the 1970's a 
heuristic approach later called L-curve, with the purpose to provide the optimum regularization parameter. 
The L-curve, called this way due to the fact of having the approximate shape of the letter L, is a parametric 
curve, where each point is associated to a parameter λ. In the horizontal axis it is represented the inversion 
error, that is, the error between the observed data and the calculated one, and, in the vertical axis, it is 
represented the amount of regularization, that is, the product between the regularization matrix and the 
estimated model. The ideal point is the L-curve knee, where there is a balance between the quantities 
represented in the Cartesian axes. The L-curve has been applied to a variety of inverse problems, including 
Geophysics. However, the visualization of the knee and the extraction of the optimal parameter is not always 
an easy task, particularly when the L-curve does not have a clear L shape. In the present work, three 
methodologies are employed for the search and obtainment of the optimal regularization parameter from the 
L curve. The first criterion is the utilization of Hansen's toolbox, which extracts λ automatically. The second 
criterion consists in building and visually extracting the optimal parameter. Finally, by third criterion one 
understands the construction of the first derivative of the L-curve, and the posterior automatic extraction of 
the maximum point, which is associated to the knee in the original L-curve. The regularization theory through 
derivative matrices, the utilization of the L-curve, and the three above criteria were applied and validated in 
the classical inverse problem of traveltime tomography. After many simulations with synthetic data, noise-
free as well as data corrupted with noise, with the regularization orders 0, 1, and 2, it was verified that the 
three criteria are valid, and in general provide satisfactory results. The third criterion presented the best 
performance, especially in cases where the L-curve has an irregular shape. 
Key-words: inverse problems, reservoir geophysics, traveltime tomography, regularization, L-curve. 

 
 

RESUMO. Os problemas inversos da Geofísica Aplicada são geralmente são mal postos. Uma maneira de 
reduzir essa deficiência é através de matrizes de derivadas, que são um caso particular de um 
procedimento mais geral denominado regularização. A regularização por matrizes de derivadas tem um 
parâmetro de entrada chamado parâmetro de regularização, geralmente denotado por λ, cuja escolha já é 
um problema. Foi sugerida na década de 1970 uma abordagem heurística mais tarde chamada de curva L, 
com a finalidade de fornecer o parâmetro ótimo de regularização. A curva L, denominado desta forma 
devido ao fato de ter a forma aproximada da letra L, é uma curva paramétrica, onde cada ponto está 
associado a um parâmetro λ. O eixo horizontal representa o erro de inversão, isto é, o erro entre os valores 
observados e os valores calculados do vetor dado. O eixo vertical representa a quantidade de 
regularização, isto é, o produto entre a matriz de regularização e o vetor estimado de parâmetro de modelo. 
O ponto de ideal é o joelho da curva L, onde existe um equilíbrio entre as quantidades representadas nos 
eixos cartesianos. A curva L foi aplicada a uma variedade de problemas inversos, inclusive na Geofísica. No 
entanto, a visualização do joelho para a extração do parâmetro ideal nem sempre é uma tarefa fácil, em 
especial quando a curva L não tem claramente o formato da letra L. No presente trabalho, três metodologias 
são empregadas para a busca e obtenção do parâmetro de regularização ideal a partir da curva L. O 
primeiro critério é a utilização do pacote de programas de Hansen, que extrai o λ automaticamente. O 
segundo critério consiste em construir a curva L, e visualmente extrair o parâmetro ótimo. Finalmente, o 
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terceiro critério compreende a construção da curva da primeira derivada da curva L, e a extração automática 
posterior do ponto máximo, o qual está associado ao joelho da curva L original. A teoria de regularização 
através de matrizes de derivadas e a utilização da curva L, juntamente com os três critérios acima referidos 
foram aplicados e validados no problema inverso clássico da tomografia de tempos de trânsito. Depois de 
muitas simulações com dados sintéticos, sejam dados livres de ruído como também dados corrompidos com 
ruído, com as ordens de regularização 0, 1 e 2, verificou-se que os três critérios são válidos e os resultados 
satisfatórios. O terceiro critério apresentou o melhor desempenho, especialmente nos casos em que a curva 
L tem uma forma irregular. 
Palavras-chaves: problemas inversos, geofísica de reservatórios, tomografia de tempos de trânsito, 
regularização, curva L. 
 
 

 
INTRODUCTION 

 
Exploration seismology or simply seismics is the 

Geophysics branch that is more often applied to 
image the subsurface for the oil industry. It uses 
several techniques based on the theory of 
propagation of elastic and acoustic waves and its 
laws of reflection and refraction. Tomography is a 
technique originally applied in medical imaging and 
since 1970's it has been used in Geophysics for 
electromagnetic and seismic imaging. In the 
particular case of seismic tomography, it is an 
inversion procedure that provides images with 
higher resolution than those provided by 
conventional reflection seismology. In this work, we 
use traveltime tomography, where the input data 
(data parameter vector d) are the traveltimes 
between sources and receivers, and the output 
data (model parameter vector m) is the slowness 
distribution of the 2-D discretized medium.  

As an ill-posed inverse problem we have here 
the classical issues of existence, uniqueness and 
stability.  These difficulties are mostly due to the 
fact that the kernel matrix is ill-conditioned, and the 
solutions are sensitive to the perturbations in the 
data. Additional difficulties are the presence of 
noise, the lack of information and the fact that our 
model is discrete. In order to attenuate this 
deficiency, it is necessary some regularization 
technique. In this work, we used the regularization 
by derivative matrices, usually known in the 
literature as Tikhonov regularization. This technique 
needs the selection of a regularization parameter or 
factor, usually expressed by λ which choice is a 
relevant problem by itself, if feasible solutions are 
desired. During many years the search of the 
optimum λ was done by trial and error. In this work, 
we use the L-curve for the selection of the optimum 
λ, which was reintroduced in the literature by 
Hansen (1992).  

The L curve, so called this way because very 
often it takes the form of that letter of the alphabet, 
is a parametric curve, where each point is 
associated with a parameter λ. The horizontal axis 
displays the inversion error, that is, the difference 
between the observed data and calculated data, 
and in the vertical axis it is represented the amount 
of regularization, which is the product between the 

regularization matrix and estimated solution. The 
ideal point would then be the curve knee, where 
there is a balance between the two quantities 
represented in Cartesian axes. The L curve has 
found application in a variety of inverse problems, 
including Geophysics. However, the identification of 
the knee and the subsequent extraction of the 
optimum parameters are not always trivial tasks, 
especially when the L curve does not have the clear 
shape of the letter L. 

Ray and Sanches (1994) introduced an early 
work in Geophysics using the L curve for the choice 
of λ in order to obtain tidal estimates based on 
altimetry data from Geosat satellite. Sá (1996) also 
used the L curve in traveltime tomography, and 
Bassrei and Santos (2007) used the L curve in 
geophysical diffraction tomography. 

The main objective of this work is to present 
three different methods for the extraction of the 
optimal parameter λ from the curve L: (i) the 
Hansen toolbox, (ii) the method of visual inspection 
of the L curve, and (iii) the method of the discrete 
first derivative of the L curve. We performed several 
simulations with synthetic data in traveltime 
tomography for different regularization orders.  

After many simulations with synthetic data, both 
with noise-free data and also with data 
contaminated by noise, in regularization orders 0, 1, 
and 2, it was verified that these three criteria are 
valid and usually provide satisfactory results. 
However the third criterion showed a better 
performance, especially in cases where the L curve 
has an irregular shape. 
 
 

GENERALIZED INVERSE AND SINGULAR 
VALUE DECOMPOSITION 

 
Consider a modeling process where the input of 

some system is described by certain parameters 
contained  in  m  and  the  output  is  described as 
d =Am, which is a linear transformation on m. If the 
vector d describes the observed output of the 
system, the problem is reduced to “choose” the 
parameters m in order to minimize in some sense, 
the difference between the observed d and the 
prescribed output of the system A m. If we measure 
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this difference through the norm ||●||, our task is to 
find the value of m which minimizes 
|| A m – d||2, 
where the M X N matrix A and the data vector d 
with M elements are provided to the problem. This 
is called a least squares problem, which can be 
formally stated as follows (1). Considering the basic 
relationship 

,md A                                                             (1) 

we wish to minimize the error using the following 
objective function based on the work of Levenberg 
(1944) and Marquardt (1963): 

,)( 2LT  eem                                               (2) 

where the error is given by ,mde A  λ is a 

scalar called the damping parameter and 

.2 mm
TL  The estimated solution, also called 

damped least squares solution, is 

.)( 1
dm

TTest AIAA                                       (3) 

Generalized inverse (GI) is frequently used in 
the inversion of geophysical data and its respective 
solution has the minimum norm. In this case, the 
objective function to be minimized is 

),()( mdtmmm ATT                               (4) 

where t is the vector of Lagrange multipliers. The 
minimization yields  

.)( 1
dm

 TTest AAA                                          (5) 

The concept of GI was developed by Moore and 
also independently by Penrose (1955). Consider a 
M X N matrix A. If the following conditions are 

satisfied: (i) ,AAAA 
 (ii) ,  AAAA (iii) 

,)(   AAAA T
 and (iv) ,)( AAAA T   then the 

N X M matrix 
A is unique. The GI is usually 

calculated using SVD or singular value 
decomposition (Lanczos, 1961). A rectangular M X 
N matrix A with rank k can be decomposed as 

,TVUA  where U is the M X M matrix which 

contains the orthonormalized eigenvectors of AA
T
, 

V is the N X N matrix which contains the 
orthonormalized eigenvectors of A

T
A and Σ is the M 

X N diagonal matrix which contains the singular 
values of A, written in the decreasing order, that is, 

.21 k   The GI A
+
 is a N X M matrix 

given by ,TUVA   where Σ
+
 is the N X M 

diagonal matrix which contains the reciprocals of 
the non-zero singular values of A, so that 
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In the case of square matrices with full rank, the 

classical inverse and the pseudo-inverse provide 
the same result, in such a way that the pseudo-
inverse is a generalization of the classical inverse. 
In this work, we will use the Moore-Penrose inverse 
A

+
, which differs from the one used by Menke 

(1989) who defines 
TT AAAA 1)(   for the least-

squares case.  
Thus, the equations 

,1
dm

 Aest
 

and 

,)( 1
dm

TTest AAA   

can be reformulated with the direct substitution of 
the classical inverse by the pseudo-inverse as 

,dm
 Aest

 

and 

.)( dm
TTest AAA   

Substituting in the above equation 
TVUA 

and ,TTT UVA  we obtain 

,)( dm
TTTTTest UVVUUV  

 

or 

,)( dm
TTTTest UVVV  

 

since U is orthogonal, that is, U
T
U=I. The last 

expression can be written as 

,)()( dm
TTTTest UVVV  

 

or 

,)( dm
TTest UV   

since V
+
V=I and ITT  )( . Finally  

,dm
Test UV                                                (6) 

since  V
T
V=I and  V

+
V=I so that (V

T
)
+
=V. 

 
 

REGULARIZATION 
 

Least-squares solutions may not provide good 
solutions or they do not even exist sometimes. In 
order to solve this problem, we use a tool for 
regularization or smoothing: the ill-conditioning of 
the matrix A is regularized and the unstable least-
squares estimate m

est
 is consequently smoothed to 

greatly reduce the possibility of wild noise-induced 
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fluctuation in d, hopefully without distorting the 
resulting smoothed image too far from the true m 
(Titterington, 1985). The concept of regularization 
was introduced by Tikhonov in 1963 in order to 
improve the quality of the inversion. Many 
researchers studied this theory and we use the 
Twomey (1963) approach. For further information, 
please check Bassrei and Rodi (1993) for a little bit 
more about names and history in regularization 
theory. Consider the following objective function: 

),()()( mmeem l

T

l

T DD                            

(7) 

where λ is the regularization parameter and Dl is 

the l-order derivative matrix. If ,0/)(  mm  

then the estimated model is given by 

,)( 1
dm

T

l

T

l

Test ADDAA                              

(8) 

 
Notice that if λ=0 we obtain the standard least 

squares. The least squares is said to be damped if 

.00 IDD
T

  If D is the first derivative matrix then 

the regularization is called to be first order and so 
on. The matrices D1 and D2 are expressed as 
follows: 
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In the last 25 years or so some researchers 

studied the problem of finding the optimum λ in 
geophysical applications. One of first works was 
done by Ray and Sanchez (1994), who used 
regularization and L-curve to raw tidal estimates 
based on Geosat altimeter data. The estimation is 
based on fitting using specific functions called 
Proudman functions as spatial basis, which is 
formulated as a linear system. The coefficients of 
fitting are obtained solving the corresponding least-
squares problem using zero-order regularization. 
Then, L-curve is applied to obtain the optimal 
regularization parameter.  

Yao and Roberts (1999) presented an algorithm 
for the practical choice of the regularization 
parameter in linear seismic tomographic inversion. 
Two criteria for the choice of the regularization 
parameter are investigated. The first approach 
assumes that norm of the errors in observed data is 
known accurately and searches the regularization 

parameter associated with this error using Newton's 
method. The second approach is the application of 
generalized cross-validation (GCV) which chooses 
the regularization parameter associated with the 
best average prediction for all possible omissions of 
one datum, corresponding to the minimizer of GCV 
function.  

More recently, Farquharson and Oldenburg 
(2004) compared two automatic ways of estimating 
the best regularization parameter to non-linear 
inverse problems: GCV and L-curve. These criteria 
initially proposed for linear problems are applied to 
the each iteration of the linearized inverse problem, 
in a typical iterative process to obtain the linearized 
solution to the corresponding non-linear problem. 
Thus, the best λ is estimated for each linearized 
iteration. To ensure that the regularization 
parameter decreases along iterations, an 
attenuation factor is multiplied by the regularization 
parameter from the last iteration to limit the next 
maximum allowable parameter.  

In the L-curve, the x axis represents the error 
between the observed data and the calculated one, 
and the y axis represents the amount of 
regularization of the solution. L-curve was 
reintroduced in the literature of inverse problems by 
Hansen (1992a, 1998) and he also developed a 
software toolbox (1992b). Hansen's book (1998) is 
a very good source of information for a more 
rigorous treatment of L-curve and also mentions the 
pioneering contributions in this field.  

The L-curve knee represents a trade-off 
between smoother solutions with higher errors and 
rougher solutions with smaller errors. Thus, the 
knee detection at the L-curve is a heuristic criterion 
to select the most appropriate solution. Solutions 
near to the curve knee are also acceptable and 
possibly more physically meaningful. We applied 
the L-curve implementing an automatic method to 
initially select the best regularization parameter, but 
solutions with regularization parameter near to the 
selected one were also considered.  Thus, one can 
achieve a solution that simultaneously satisfies the 
criteria of error minimization, smoothness and also 
presenting physical meaningful characteristics. The 
detection of the L-curve corner was performed 
using Hansen's toolbox. Considering this curve 
approximately L-shaped, one can find its knee 
searching the maximum curvature point. However, 
secondary inflexions may occur, which may cause 
wrong detection of the best regularization 
parameter. Thus, the automatic method of knee 
detection adopted in this toolbox may lead 
sometimes to inadequate regularization 
parameters. Due to this problem, sometimes we 
needed to select the best regularization parameter 
by visual inspection of L-curve and the non-
automatic detection of its knee. 

We adopted a different criterion based on a 
curve representing the cosine of angles between 
adjacent segments of L-curve discrete 
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representation, which we named Theta curve. 
Wherever the curve is locally straight, the angle 
tends to zero, leading the cosine of this angle to 
one. Near the L-curve knee, the angle tends to be 
greater than at its neighbors, leading the cosine to 
values below one. Thus, smaller values of cosine 
are associated with inflexions of the curve, which 
lead us to inspect the minima of the Theta curve to 
find the knee of L-curve and consequently the best 
regularization parameter. The method developed to 
select the best regularization parameter is based on 
the detection of the first local minimum of the Theta 
curve. This minimum is automatically detected 
where the first derivative is close to zero and the 
second derivative is positive, adopting thresholds 
due to the discretization and arithmetic computer 
precision. Thus, the first occurrence of minimum at 
Theta curve is associated with the knee of L-curve, 
giving us the best regularization parameter. Further 
inflexions of the L-curve were discarded because 
only the first local minimum of Theta curve is 
associated with L-curve knee. This avoids the 
wrong regularization parameter detection described 
earlier, when one adopts the criterion of maximum 
curvature of the L-curve. 
 
 

THE L-CURVE 
 

The name L-curve comes from the fact that the 
curve has usually the form of the letter “L”, with an 
inflexion point that separates the horizontal and 
vertical parts of the curve. According to Hansen 
(1998), the approximately vertical part of the curve 
corresponds to solutions where ||Dnm|| is very 
sensitive to regularization parameter changes, 
since the solutions are dominated by perturbation 
error.  On the other hand, the approximately 
horizontal part corresponds to the solutions 
dominated by regularization error, since the 

residual norm dmA is more sensitive to the 

value of λ. The regularization parameter λ is an 
important scalar number that controls the 
regularization solution, which comes from the 
optimization of the objective function, that is, 
equation (7). 

Choosing a high value for λ clearly favors a low 
value of ||Dnm|| and a high value of the residual 

norm dmA , which is equivalent to the high 

amount of regularization, since the derivative of the 
model parameters will enforce a greater weight in 
the objective function, over-regularizing the 
solution. On the other hand, a low value for λ will 
provide solutions that tend to minimize the error in 
the data but with a low amount of regularization 
(under-regularization).  

A good λ selection will provide the equilibrium 
between the error in the data and the smoothing in 
the model parameters. In the last 25 years a 
number of strategies have been suggested for the 

choice of λ. Hansen (1992) proposed the L-curve 
as a graphical tool that express the compromise of 
these two amounts, where the chosen model 
corresponds to the equilibrium situation 
represented by the region, known in the literature 
as the L-curve knee as can be seen in Figure 1. 
This tool was first suggested in the literature by 
Miller (1970) and also by Lawson and Hanson 
(1976). The plotting of the L-curve consists in 
solving a regularized linear system for each λ, 
computing its solution. For each estimated solution, 
one computes the L-curve coordinates: the discrete 
n-order derivative Dnm in the x-axis and the error

mde A  in the y-axis. The computation of 

the L-curve implies an additional computation cost 
in the inversion procedure, but it is compensated by 
avoiding the time-consuming trial and error search 
for λ. 
 
Figure 1 - Illustrative L-curve where λ1 < λ2 < . . . < λ5. 

 
This obtained solution with regularization must 

have physical meaning, which may mean a 
smoother solution even if it has a slightly larger 
error, since the error is intrinsic to the solution and 
usually appears during the data acquisition 
process. In other words, methods that seek only the 
error minimization may yield inconsistent results 
without physical meaning. Therefore, the 
philosophy of the L-curve is to search a parameter 
that generates a balance solution between the 
regularization amount and the data error. The knee 
of the L-curve represents this balance. In this work, 
three methods for the extraction of the optimal 
parameter are presented and compared: Hansen 
toolbox, visual inspection of the L-curve and the 
first derivative of the L-curve. 
 
Hansen's Toolbox 

The toolbox called Regularization Tools, 
developed by P. C. Hansen in 1990-1992, has 
routines that are easy to use, numerically robust, 
based on MATLAB coding. The purpose of the 
toolbox is to solve ill-posed inverse problems 
through the Tikhonov regularization technique. The 
main M X N matrix A and the P X P derivative 

 



 TERRA, BASSREI, SANTOS, p. 61-71    66 

 

 

Cadernos de Geociências, v. 11, n. 1-2, nov. 2014 

www.cadernosdegeociencias.igeo.ufba.br  

ISSN 2238-4960 

matrix D are decomposed by SGVD or generalized 
SVD: 

,1 XUA                                                       (9) 

and 

,1VSXD                                                     (10) 

where the M X N matrix U and the P X P matrix V 
are orthonormal. The P X P matrix Σ contains the 
square root of the eigenvalues of matrix A

T
A. These 

are called singular values and are disposed in the 

principal diagonal of matrix Σ is the decreasing 

order, that is,  .21 P   The P X P matrix 

S contains the square root of the eigenvalues of 
matrix D

T
D, that is, the singular values  which are 

also disposed in decreasing order, that is,  

.21 P   The N X N matrix X is non-

singular. The elements of matrices Σ and S, which 
are singular values, are normalized: 

,122  ii   

and the generalized singular values 
i of the pair of 

matrices A and D are defined by the relationship 

.
i

i
i




   

 
Substituting equations (9) and (10) in equation 

(8) we have 

  11 )[( XUUX TTTest
m  

           .)(])( 1111
d

TTTTTT UXVSXVSX   

Since U and V are orthonormal matrices, so that 

IUUT   and ,IVV T   the above equation can 

be expressed as  

  11 )[( XX TTest
m           

           d
TTTTT UXSXSX   )(])( 1111  

or 

,)(])()[( 1111
dm

TTTTTTest UXXSSX   

or 

.)( 1
dm

TTTTest USSX    

 

Using the notation ,2  T ,2 SSS T and 

being the fact that  is a square matrix so that 

:T
 

,)( 122
dm

Test USX                              (11) 

which can be written in vector notation as: 

,
1

i

i

T

i
N

i

i

est f x
du

m





                                          (12) 

where the filter coefficients fi are given by: 

.

,

,/

,1
22
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ii
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It is necessary to compute the GSVD only once. 

For each model estimation, which is associated to a 
given point of the L-curve, it is used a different set 
of filtered singular values. The parameter λ is 
related to filter intensity and when λ tends to zero it 
almost does not influence the division, but when it 
is high , it prevents small values of σ, acting thus as 
a damper of filter. 

Since the L-curve consists of a series of discrete 
points, Hansen (1998) proposed to approximate it 
by a 2-D spline curve, and then calculate the point 
on the spline curve with maximum curvature. This 
point is defined as the knee of the L-curve. Thus, in 
addition to providing automatically the optimal 
regularization parameter from the L-curve, 
Hansen's package also provides the numerical 
treatment of ill-conditioned problems. 
 
Visual Inspection of the L-curve 

The visual inspection of the L-curve provides a 
non-automatic selection of the optimal 
regularization parameter. Even being a manual 
method, the visual extraction ensures a more 
reliable selection, since significant variations may 
occur in the shape of the L-curve, which can lead 
the automatic methods to become very susceptible 
to error. 

This method assumes the principle of visual 
identification of the most obvious inflection (even of 
a secondary inflection may occur), the optimal 
regularization parameter. This inflection point 
corresponds to the so-called knee of the L-curve. 
The estimation of the inflection point of the L-curve 
can be made using different criteria found in the 
literature such as that developed by Hansen (1998), 
described earlier, which seeks the point of 
maximum curvature from the approximation of the 
L- curve by a 2-D spline curve. However, secondary 
inflection may occur in the L-curve, which will cause 
the incorrect detection of the optimal regularization 
parameter. The visual inspection may also lead to 
the incorrect choice, since the L-curve can present 
ambiguity in the choice of its inflection, as can be 
seen in Figure 2. 

Sá (1996) proposed the L-module, which uses 
the nearest point of the L-curve to the origin of the 
curve as an estimate of the L-curve knee. But this 
criterion only works properly when the L-curve 
clearly has the shape of letter L and it may fail 
when the inflection knee differs significantly from a 
right angle, because other points outside of the 
knee may be closer to the origin. Aiming to reduce 
risks in the detection of the regularization 
parameter due to variations from the idealized 
shape of the L-curve, Santos and Bassrei (2007) 
proposed a different criterion, which they named as 
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Θ-curve, based on a curve that represents the 
cosine of the angles between adjacent segments of 
the discrete representation of L-curve. Thus, near 
the knee of the L-curve, the angle between 
adjacent segments tends to be higher than in the 
surrounding area, leading to cosine values less 
than one, with the consequent search for the 
minimum of the Θ-curve to find the L-curve knee. 
 
Figure 2 - Example of a L-curve with an ambiguous 

inflexion point 

 
 

 
 
L-curve First Derivative 

The location of the inflexion point in the L-curve 
provides an appropriate value for the regularization 
parameter λ. However, the computation of the L-
curve and its curvature can be computational costly 
for large linear systems. This is because the 
determination of any point on the L-curve requires 
both the regularized solution and the norm of the 
residual RMS data error. Therefore, the 
approximation of a L-curve through a polynomial 
interpolation curve can generate points of maximum 
curvature that are not available. This may require 
additional techniques. For these reasons, this paper 
proposes the use of the discrete first derivative of 
the L-curve for the automatic selection of optimal 
regularization factor, defined approximately as: 

 

.
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dx
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This very simple method is based on detection 

of the local maximum of the first derivative curve. 
This extreme value can be automatically detected 
where the derivative reaches its maximum and 
typically corresponds to the knee of the L-curve. In 
our hypothetical example, the curve in Figure 4 
region is obtained from the numerical derivative of 
the L-curve shown in Figure 3. 
 

Figure 3 -  Example of a L-curve with a well defined 

inflexion point 

 
 
 
 
Figure 4 - Example of the first derivative of the L-curve 

showed in Figure 3 

 
 

 
 

SEISMIC TRAVELTIME TOMOGRAPHY 
 

Tomography is a technique of image 
reconstruction by the cumulative sum of property 
values in certain raypaths. In other words, physical 
parameters are estimated from projections 
measured at the boundary of interest region. 
Traveltime tomographic inversion is a special type 
of inverse problem that estimates object properties 
from line integrals. 

Seismic traveltime tomography is applied to the 
exploration of hydrocarbons, particularly in a more 
detailed scale in reservoir geophysics, in order to 
estimate velocity models of the subsurface. The 
traveltimes between sources and receivers are the 
input data for the inversion, represented by the data 
vector d. The G matrix used in traveltime 
tomography describes the ray geometry. The 
parameters to be estimated, represented by the 
vector m, correspond to slowness (reciprocal of 
velocities), in the isotropic case, or density 
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normalized elastic parameters, in the anisotropic 
case. In this problem the vector d corresponds to 
vector of traveltimes t, and the vector m 
corresponds to the vector of slownesses s.  

The traveltime t between a source and a 
receiver is computed through the line integral of 
slowness, along a raypath: 

 )(
,),(

sr
j

j

dlzxst                                            (14) 

where rj(s) is a raypath where the integration is 
performed, which is a function of slowness, dl is a 
ray element, s(x,z) is the slowness of the medium 
at coordinates (x,z), where x is the horizontal 
coordinate and z is the vertical coordinate. The 
slowness model can be parameterized using a 
regular grid, 
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where the basis function ),( zxBi
 is the box 

function, which is 1 on the i-th block and zero 
otherwise. This model representation leads to the 
following relation 
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Consider the expansion of the j-th traveltime 

observation in truncated Taylor series around s
0
: 
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or  

).( 000
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If the call the traveltimes t as the vector 

observed traveltimes t
obs

, and the slowness s and 
the up-dated slowness s

(k+1)
, equation (19) can be 

generalized for the k-th iteration: 

),( )()1()()( kkkkobs G sstt  
 

or 

,)()()( kkk G st                                                (20) 

where
)(k

t corresponds to the misfit between 

computed and observed traveltimes for a specific 

model at k-th iteration, 
)(kG contains the elements 

gji which corresponds to the distances along the j-th 

raypath across the i-th block of model, and 
)(k

s
corresponds to slowness model update at k-th 
iteration. 

For the linear case, the rays are straight, that is, 
the ray trajectory does not depend of the slowness 
distribution. In this case, the equation (20) becomes  

.st G                                                          (21) 

 
 

SIMULATIONS 
 

The adopted geological model for simulations 
can be seen in Figure 5 and it has as main feature 
a lens simulating a reservoir. The model was 
discretized into 900 blocks, being each block a 
square with 30 x 30 meters. The velocity of the 
homogeneous background medium is 2,000 m/s, 
with a layer that is 100 m thick and velocity equals 
to 1,700 m/s. The sound propagation velocity of the 
target reservoir is 3,400 m/s, which is surrounded 
by a seal with 2,400 m/s. The adopted acquisition 
geometry was well-to-well, with 30 sources and 30 
receivers, in such a way that there are 900 rays. 
Thus the tomographic matrix is square and the 
system of linear equations is determined with 900 
equations and 900 unknowns. The adopted 
approach can also be applied to solve a system 
that could also be underdetermined or 
overdetermined, with rectangular matrices, if 
needed. 
 
Figure 5 - True model for traveltime tomography 

simulation. The grayscale color bar indicates the acoustic 
velocities in m/s 

 
 

In a first simulation we directly used SVD 
without any regularization technique, in order to 
deliberately compare with the upcoming inversions 
using derivative matrices to regularize the solution. 
The result was not satisfactory, as can be seen in 
Figure 6, generating an inconsistent and rather 
unstable estimated model. SVD alone is not 
enough to stabilize the solution, since the 
singularity of the matrix greatly disturbs the data. 
Although being a subjective criterion, a significant 
improvement can be observed with the truncation of 
the very small singular values that produce 
undesirable effects in the matrix inversion. It is 
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noteworthy that in the next results, using 
regularization, all singular values were used, that is, 
the truncation procedure was not applied. 
 
Figure 6- Estimated model with non-truncated SVD, 

using 900 singular values. The gray color bar indicates 
de acoustic velocities in m/s 

 
 

 
The same geological model was used for the 

simulations with regularization, both with noise free 
data and with data contaminated with Gaussian 
noise. In each simulation we calculated the L-curve 
for three regularization matrices (orders 0, 1 and 2). 
For each simulation we computed the optimal 
regularization parameter from the L-curve using 
three aforementioned methodologies (Hansen's 
toolbox, visual inspection and the first derivative).  

Table 1 summarizes all the results. Due to 
space limitations, we show the results for first order 
regularization and the data corrupted with noise 
factor α = 0.1. Figure 7 shows the L-curve obtained 
by Hansen's toolbox, which provides the optimal 
parameter λ

opt
 = 66.87. Using this parameter we 

obtained the recovered tomogram showed in Figure 
8. The RMS error between the true and estimated 
models was  Em = 4.42 %. We also generated a L-
curve that can be seen in Figure 9. By the visual 
inspection criterion we choose as optimal 
parameter λ

opt
 = 10,000. Using this parameter we 

obtained the estimate showed in Figure 10 with Em 
= 4.51 %. The derivative of the L-curve in Figure 9 
can be seen in Figure 11. The maximum of the 
curve in Figure 11 corresponds to the parameter 
λ

opt
 = 100,000, which is marked by a circle. This 

parameter was used to generate the recovered 
tomogram shown in Figure 12, with  Em = 4.83 %. 
Although the regularization parameter provided in 
Hansen's toolbox was different from the other two 
methods because of its normalization, the L-curves 
computed for both methods were similar, as well as 
the coordinates of the optimal regularization 
parameter in both L-curves.  
 

Table 1 - Results for the tomographic inversion, 

comparing the three methods for the extraction of the 
optimal parameter λ

opt
, using three levels of noise (α = 0, 

α = 0.01  and α = 0.1) and three orders of regularization 
(n = 0, n =1 and n =2). Em is the RMS relative RMS error 
between the true model and the estimated model. The 
last column informs the CPU processing time in seconds 
 

Method 1 - Hansen's toolbox 

α n λ
opt

 Em (%) 

 
0 

0 3.31 X 10
-7

 16.79 

1 6.92 X 10
-6

 1.10 

2 5.74 X 10
-6

 1.14 

 
0.01 

0 6.27 X 10
-2

 16.84 

1 1.71 3.84 

2 2.69 3.54 

 
0.1 

0 5.73 X 10
-2

 117.35 

1 66.87 4.42 

2 76.25 4.84 

Method 2 - Visual inspection 

 
0 

0 10
-3

 3.68 

1 10
-3

 3.46 

2 10
-3

 2.30 

 
0.01 

0 10
-2

 3.29 

1 10.00 3.80 

2 1.00 3.23 

 
0.1 

0 1.00 16.88 

1 10
4
 4.51 

2 10
3
 4.91 

Method 3 - First derivative 

 
0 
 

0 10
-6

 2.39 

1 10
-6

 1.11 

2 10
-6

 1.08 

 
0.01 

0 10.00 3.71 

1 10
2
 3.90 

2 1.00 3.23 

 
0.1 

0 10
2
 5.30 

1 10
5
 4.83 

2 10
6
 5.28 

 
 
 
Figure 7 - L-curve from Hansen's toolbox, first order 
regularization, λ

opt
 = 66.87 
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Figure 8 - Estimated model using λ
opt

 = 66.87 from 
Hansen's toolbox. α  = 0.1, Em = 4.42 %. The gray color 
bar indicates the acoustic velocities in m/s 

 
 
 
Figure 9 - L-curve for visual inspection and calculation of 

the first derivative, first order regularization 

 
 
 

Figure 10 - Estimated model using the visual inspection 

of the L-curve, first order regularization, λ
opt

 = 10,000, α = 
0.1, Em = 4.51 %. The gray color bar indicates de 
acoustic velocities in m/s 

 
 

Figure 11 - First derivative of the L-curve, first order 
regularization, where is possible to see λ

opt
  = 100,000 

with a circle 

 
 
 
Figure 12 - Estimated model using the first derivative of 

the L-curve, first order regularization, λ
opt

 = 100,000, α = 
0.1, Em = 4.83 %. The gray color bar indicates de 
acoustic velocities in m/s 

 
 

 
 

From the qualitative point of view, Figures 8, 10 
and 12 show great resemblance. From a 
quantitative standpoint, the RMS error between the 
true model and the estimated model, associated to 
Figures 8, 10 and 12 are very close, the first being 
slightly the best approach. However, when 
analyzing Table 1 as a whole, which summarizes 
the results of 27 simulations, we found that 
approach 3 is more robust, since the RMS error 
between real and recovered models is always less 
than 5%. Besides, the approaches 2 and 3 are 
considerably superior in the case of zero order 
regularization.  
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CONCLUSIONS 
  

L-curve has an important role in the solution of 
ill-posed inverse problems that use the 
regularization technique. This is because the L-
curve is one of the best ways to determine the 
optimal regularization parameter. Although the use 
of L-curve represents an additional computation 
cost, it has the advantage to skip the almost always 
non-consistent method of trial and error for the 
choice of the optimum λ. Despite the fact that the 
numerical treatment is different, the L-curve 
obtained from Hansen's toolbox (method 1), which 
uses GSVD, is similar to that calculated using 
FORTRAN for the methods 2 and 3, which uses 
standard SVD. Thus the estimated models are in 
general very similar, although the optimum λ is very 
different.  

Hansen's toolbox provides the optimum λ in an 
automatic way, and its computational time is lower 
if compared to the other two approaches. GSVD 
decomposes the two matrices just once, while in 
our approach we perform an inverse procedure by 
SVD for each λ. The simulations in traveltime 
tomography, with several noise levels, and three 
regularization orders, allowed us to validate the 
three approaches for the extraction of optimum λ 
from the L-curve. With the increase of additive 
noise, one must also increase the amount of 
regularization, as can be seen in Table 1. 

The second and the third criteria provided the 
best result for zero order regularization. The first 
order regularization was the most effective in all the 
three methodologies. In general, the third criterion 
provided the best results. Despite the fact that 
Hansen’s toolbox is the fastest method, sometimes 
the selected λ was not the best one. Besides, the 
available toolbox cannot be applied to 
underdetermined problems. On the other hand, our 
FORTRAN code for SVD computation does not 
have such limitation. Moreover, in cases where the 
L-curve does not have the shape of the letter L, we 
found that the method of visual inspection, together 
with the calculation of the first derivative of the 
curve becomes a better option.  

The estimated models in traveltime tomography 
were quite satisfactory. The true model, which 
simulates a realistic case of an oil reservoir where 
the area of interest was divided into a mesh of 30 x 
30 blocks, was well recovered even in the presence 
of noise. One can also notice that the modeling 
using straight ray tracing is feasible where there are 
no abrupt transitions in velocity. 
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