Desenvolvimento de Software para Simulação de Supressão Dinâmica da Luminescência com Fins Didáticos.

Lauro Camargo Dias Júnior¹ (PQ)* e João Batista Marques Novo¹ (PQ)

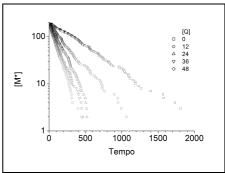
Email: laurocd@ufpr.br

¹Departamento de Química, Universidade Federal do Paraná – Caixa Postal 19081, Curitiba-PR; CEP 81531-990

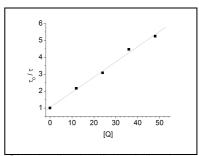
Palavras-Chave: luminescência, software

Introdução

A luminescência de uma molécula eletronicamente excitada (M^*) pode ser suprimida se esta interagir com uma molécula supressora (Q). Dentre os processos que competem com a luminescência temse a supressão dinâmica, que é controlada por difusão, pois requer a aproximação mútua entre M^* e Q. O tempo de vida (τ) e a intensidade de luminescência (I) de M^* diminuem com o aumento na concentração do supressor ([Q]) conforme previsto pela Equação de Stern-Volmer apresentada nas seguintes formas:


$$\tau_0/\tau = 1 + k_q \tau_0[Q]$$
 (Eq. 1)
 $I_0/I = 1 + k_q \tau_0[Q]$ (Eq. 2)

onde I_0 e τ_0 correspondem aos valores de I e τ quando [Q]=0 e k_a é a constante de velocidade para o processo bimolecular de supressão (no caso $k_{\alpha} \approx$ $k_{\text{difusional}}$). Plotando-se τ_0/τ (ou I_0/I) versus [Q] obtémse uma reta cuja tangente corresponde ao produto $K_{q}\tau_{0}$ chamado de constante de Stern-Volmer $(K_{SV})^{1}$ Foi desenvolvido um software em linguagem BASIC para compilador FreeBASIC² com fins didáticos para a simulação desta cinética utilizando-se o método de Monte Carlo para sorteio das moléculas. Este método permite a investigação do sistema sem a necessidade de se conhecer, a priori, equações diferenciais complexas. O software está disponível na internet.³ e as seguintes etapas são executadas: 1) sorteio das posições e velocidades iniciais das moléculas M e Q presentes dentro de uma caixa; 2) determinação das trajetórias e dos tempos de destas moléculas: 3) probabilidade de uma colisão resultar em supressão; 4) cômputo das moléculas suprimidas em função do tempo e, 5) apresentação dos gráficos no monitor.


Resultados e Discussão

Através das simulações obtiveram-se as curvas de decaimento de M* em função do tempo para diferentes valores de [Q] (Fig. 1). As tangentes destas curvas fornecem os tempos de vida τ que foram plotados na forma de τ_0/τ versus [Q] (Fig. 2). Observa-se o comportamento linear conforme previsto pela Eq. 1 cuja tangente fornece $K_{\rm SV}$ e $k_{\rm q}$. É possível alterar os parâmetros tais como o número de moléculas presentes, a densidade, e a velocidade máxima. As unidades são arbitrárias e

possibilitam conversão para escalas de diferentes ordens de grandeza.

Figura 1. Simulação da diminuição da concentração de M* em função do tempo com o aumento de [Q] (unidades arbitrárias).

Figura 2. Simulação da diminuição de τ versus [Q] resultando na Equação de Stern-Volmer – Eq. 1 – com unidades arbitrárias.

Conclusões

O software contribui para a compreensão de equações cinéticas utilizadas em espectroscopia. Através do ajuste dos parâmetros e da conversão das unidades é possível ao usuário simular diferentes condições experimentais e discutí-las em sala de aula em termos de propriedades tais como o efeito da viscosidade, da temperatura e concentração.

Agradecimentos

Universidade Federal do Paraná (UFPR)

¹⁾ TURRO, Nicholas. **Modern Molecular Photochemistry**. Sausalito: University Sciences books, 1991. p.245-248.

²⁾ DIAS, Lauro C. e NOVO, João B. M..**Software SternVolmer**. Disponível em http://www.quimica.ufpr.br/jbmnovo. Acesso em: 09 maio 2012.

³⁾ VICTOR, Andre. **FreeBASIC Compiler**. Disponível em http://www.freebasic.net>. Acesso em 09 maio 2012.