Filosofia da Química como fundamento do ensino de Química

Marcos Antônio Pinto Ribeiro¹, Nelson Rui Ribas Bejarano², Jailson Alves dos Santos³

- ¹ Professor da Assistente da Universidade Estadual do Sudoeste da Bahia (UESB). Marcolimite@yahoo.com.br
- ² Professor do Instituto de química da UFBA
- ³ Doutorando do PPGEFH das Ciências/UFBA-UEFS

Palavras chaves: Filosofia da guímica, práxis guímica, educação guímica

Resumo: Este trabalho é uma primeira aproximação entre currículo, filosofia e química na busca de problematizar o campo disciplinar da filosofia da química como um fundamento do ensino de química. Fez-se um estudo bibliográfico, através da técnica da análise temática, da produção literária desse emergente campo disciplinar. Como resultado, propomos cinco campos de sentido, estruturas transversais e de especificidades químicas. De posse destas estruturas, propomos uma problematização da seleção, articulação e inovações curriculares em química e um diagrama heurístico para a educação química, legitimado pelo confronto com literatura e crítica de experts. Numa segunda etapa da investigação sugerimos, problematizamos e testamos este diagrama como ferramenta formativa, de planejamento, de design e de avaliação de práticas curriculares e didáticas na formação inicial de professores de química.

INTRODUÇÃO

Como consequência da pouca reflexividade da comunidade química (Van Brakel, 1999), o currículo não é orientado por uma estrutura explícita e especifica no *nível sintático* (especificidade disciplinar), *filosófico* (reflexão sobre esta especificidade) e *pedagógico* (transmissão desta especificidade). Há, assim, a necessidade de explorar uma estrutura específica pelo esforço conjunto entre filósofos químicos, os quais têm produzido o campo disciplinar da filosofia da química desde os anos 1990, e educadores químicos (Berkel, 2005).

Contudo, em função da pouca distância temporal, do grande formalismo, da vastidão e complexidade dos conteúdos, a integração deste debate, no contexto do ensino, ainda é muito pequeno, tendo sido mais estabelecido recentemente após uma chamada da revista Science & Education (2010). Como consequência, existem ainda poucos guias analíticos, o que dificulta a comparação e interlocução entre propostas.

Há necessidade de identificar, cartografar e propor campos de sentidos, estruturas subjacentes, de interesse curricular, presentes neste debate que possa estruturar, fundamentar e organizar os conteúdos do ensino de química, os saberes docentes e a profissionalização dos professores e auxiliar em uma autonomia da aprendizagem. Estes campos podem e devem ser refinados e validados pela literatura e crítica de experts.

O objetivo principal deste trabalho é problematizar o recente debate da filosofia da química no sentido de sua integração ao currículo de formação inicial de professores de química. Fundamentado neste debate iremos explicitar critérios de seleção e organização curricular; problematizar a integração e articulação curricular a partir de elementos mínimos da práxis química; explicitar princípios, orientações e exemplos de inovações curriculares

em unidades curriculares; propor um instrumento diagramático com poderes heurísticos para formação, avaliação, planificação e análise de práticas curriculares e pedagógicas.

FILOSOFIA DA QUÍMICA: EMERGÊNCIA DE UM CAMPO DISCIPLINAR

A filosofia da química é um campo disciplinar emergente na filosofia da ciência, tendo como marco de sua institucionalização o ano de 1994, quando foram realizados muitos eventos em vários países (Reino Unido, Itália e Alemanha). Durante o século XX, a filosofia da ciência, restrita a análise lógica e sintática da ciência ideal, e no contexto do positivismo lógico, negligenciou a filosofia da química. Contudo, na atualidade, é o campo mais fértil dentro da filosofia da ciência. Como síntese do campo disciplinar organizamos a tabela abaixo.

Tabela 1 : Síntese das principais características do campo disciplinar da filosofia da química.

Fonte: revista Hyle e Foundations of Chemistry

Fonte: revista Hyle e Foundations of Chemistry			
Dimensão	Categoria	Descritores	
Institucionalização	Duas revistas	Hyle: Investiga mais a prática da química	
		Foundations of Chemistry: Aproximação analítica	
	ISPC	Fundada em 1997	
	Congressos e	ISPC - 17 º será em 2012	
	eventos		
		Cursos e minicursos em todo o mundo	
	Impacto	Dois números da revista Synthese (1997 e 2007)	
		Artigos na APA (Association of Philosophy of	
		American)	
		Edição especial da revista <i>Science & Education</i> em	
		2011	
	Livros,	4 livros principais	
	monografias e	Mais de 700 artigos (Schummer, 2006)	
	artigos	Mais de 60 monografias (Schummer, 2006)	
Atores	País principais	Alemanha, UK, USA, França e Itália. Brasil ainda	
		pouco representado	
	Formação	Filósofos e químicos	
	Instituição	Universidades	
Temáticas	Principais	Negligenciamento, reducionismo, autonomia da	
	temas	química, modelos, visualização, ética e química,	
		tipos naturais, tabela periódica, construtivismo,	
		realismo e química, relação da física com a	
		química, clássicos da filosofia	
	Transversais	Reducionismo, autonomia e relação com clássicos	
		são transversais	
	Principais	Leis químicas, autonomia da química,	
	debates	reducionismo, pluralismo ontológico, ética e	
		química, estética química, imagem da química	
Relações	Com física	Reducionismo, superveniência	
	Com biologia	Ciência de serviço, nanobiotecnologia, emergência	
	Com clássicos	Kant, Peirce, Aristóteles, Leibniz, whitehead,	
	da filosofia	Hegel,	

XVI Encontro Nacional de Ensino de Química (XVI ENEQ) e X Encontro de Educação Química da Bahia (X EDUQUI)

Com filósofos		Hacking, Putnam, Galison, Bachelard, Polanyi,
	da ciência	Prigogine, Duhem
Caracterização da		Classificações, relações internas, transformações
química		de substâncias, arte combinatória, ciência central,
•		diagramaticidade, processos

A procura da desejável visibilidade da Química no contexto da Filosofia da Ciência tem orientado um programa mínimo e inicial da pesquisa em Filosofia da Química:

Tabela 2 : Principais linhas de pesquisa no inicio da filosofia da química, (Schummer, 2006)

Problemas	Problemas associados
Ontologia da química	Tipos naturais, referenciação, sistema de classificação, propriedades materiais e organizações das redes de relações, periodicidade (Schummer, 2006; Harré, 2005; Needham, 1996).
Conceituação e representação	Linguagem icônica e diagramática; modelos; explicação estrutural; dualidade e circularidade dos conceitos. (Schummer, 2006; Goodwin, 2008).
Questões fundacionais	Axiomatização da tabela periódica; teoria dos grupos; simetria e topologia (Schummer, 2006; Earley, 2004, 2006, 2011).
Relação com física e biologia	Reducionismo/emergentismo/pluralismo; autonomia da química; ciência de serviço.

Uma aproximação ao contexto do ensino é ensaiada e aqui damos nossa proposição.

Campos estruturantes da filosofia da química: antinomias da química e seleção de conteúdos

Das antinomias e tensões, são possíveis de serem pensadas filosoficamente e o currículo faz uma seleção. No cruzamento com a literatura é possível localizar como é feita esta seleção curricular dos conteúdos. Na tabela abaixo fazemos uma síntese.

Tabela 3: Principais problemas discutidos nas revistas por campos estruturantes e seleção curricular

Campo estruturante	Antinomias e/ou tensões	Seleção curricular		
		Atual	Proposto F.Q e Inferências	
	Micro/Macro	Micro: reducionismo	Micro e macro	
	Contínuo/Descontínuo	Descontínuo (corpuscular)	Pluralismo ontológico	
	Todo/Parte	Parte: analítico, empírico	Mereologia especial não aditiva	
	Substância/Relação	Substância: essencialismo	Rede de relações interconectada	
	Modelo/Realidade	Realidade: Realismo ingênuo	Pensamento diagramático –Semiótica	
	Estático/Dinâmico	Estático: estrutura	Realismo processual	
	Qualitativo/Quantitativo	Quantitativo: Química teórica	Integrar das duas visões	
	Estrutura/Composição	Estrutura: Química teórica	Integração das duas visões	

XVI Encontro Nacional de Ensino de Química (XVI ENEQ) e X Encontro de Educação Química da Bahia (X EDUQUI)

Intervenção e	Indutivo/Dedutivo	Dedutivo: fisicalismo	Abdutivo, criativo
	Descritivo/Explicação	Explicativo: Física teórica	Domínios de especificidade
	Real/Ideal	Ideal	Intervenção, realização
	Análise/Síntese	Análise	Ambos
	Nomológico/Ideográfico	Nomológico: influência da	Ambos
		física	
Contextos e	Academia/Indústria	Indústria: ensino profissional	Ciência pós acadêmica
	Criar/Descobrir	Descobrir	Contexto de descoberta e
			aplicação, inovação
	Ciência/Técnica	Ciência: como ato de fé	Química como uma
			tecnociência
	Heurístico/Algoritmo	Algoritmo: dedutivismo	Introduzir heurística na
			química
	Arte/Ciência	Ciência como ato de fé	Entre arte e ciência
Evolução e juízo	Central/Serviço	Central: endogenia do	Interdisciplinaridade: física
		campo	e química
	Util/Risco	Útil	Responsabilidade moral.
			Introduzir ética
	Artificial/Natural	Artificial	Ambas
Normatividade e	Nomotética/Ideográfica	Nomotética: Indutivismo	Ambas
	Criativa/Pragmática	Pragmática	Ambas
	Instrumental/Invenção	Instrumental	Ambas
	Contexto/Universal	Universal	Ambas

O mapeamento feito acima nos permite muitas relações, inferências e problematizações sobre as relações filosofia, química e currículo. Para cada uma das tensões e/ou antinomias é possível uma avaliação mais clara sobre seleções curriculares e os principais elementos do currículo: concepção e desenho; finalidades e objetivos; seleção e organização dos conteúdos; desenvolvimento e implementação. Estes problemas, obviamente, estão além do espaço deste trabalho.

PLURALISMO DA práxis QUÍMICA E DIAGRAMA FUNDAMENTAL: PROPOSTA

O pluralismo tem sido defendido como uma filosofia mais apropriada para a química em oposição ao monismo cientificista e redutor. Filosófos da química têm reiteradamente qualificado a química como uma ciência complexa, operativa, criativa, inovativa, interventiva, heterogênea e pluralista, difícil de ser pensada e comunicada. Efetivamente, para além do fato de a teoria em que se baseia a conceitualização da química não ser unificadaⁱ, esta ciência tem sido reiteradamente caracterizada por vários tipos de pluralismo: Ontológico (Bachelard, 2009), metodológico (Schummer, 1998, 2006), epistemológico (Bachelard, 2009) e axiológico (Kovac, 2002).

O desenvolvimento de uma filosofia do ensino de química ainda não foi proposta e o currículo de química, regulado pela tradição (Laszlo, 2011) não transmite esta pluralidade. Defendemos em outro espaço (Ribeiro & Costa Pereira, 2012) que cartografar esta pluralidade e articulá-la curricularmente é o objetivo primordial da educação química. Neste sentido, identificamos cinco domínios de alto grau de inclusividade, transversalidade e especificidade entre filosofia, química e currículo (Tabela 3).

Tabela 3 : Proposta dos domínios da práxis química ou campo de problemas da práxis química.

Fonte. Análise temática da produção da filosofia da química

Dimensão	Campo de problemas		
Classificações	Mereologia (Harre & Llored, 2010)		
	Sistema periódico: História, previsão, retrodição, (Scerri, 2004)		
	Classificações (Lefreve, 2011)		
	Essencialismo (Harre, 2011; Vihalemn, 2007)		
	Pierre Duhem (Needham, 2006)		
	Ontologia para química macroscópica (Needham, 2006)		
Processualidade	Química como ciência das relações (Soukup, 2005; Bernal & Daza,		
	2010; Earley, 2004)		
	Realismo processual estrutural (Earley, 2006)		
	Filosofia de processos (Earley, 2006; Stein, 2004)		
	Emergência e auto-organização (Luisi, 2001)		
Diamenaticidada	Influência de Prigogine na química (Lombardi, 2011; Earley, 2004)		
Diagramaticidade	Semiótica, visualização (Schummer &Spector, 2003)		
	Diagrama (Goodwin, 2008)		
	Explicação estrutural na orgânica (Goodwin, 2008)		
	Estrutura molecular Instrumentos de papel (Klein, 2001) Influência da química em Peirce (Seibert, 2001)		
	Simetria e topologia (Earley, 2006)		
 Fenomenotécnia	Metaquímica (Nordhamm, 2006)		
Tenomenoteenia	Revolução instrumental (Schummer, 2006)		
	Dependência espécie x instrumento (Rothbart, 1999)		
	Realismo prático (Vihalhem, 2011)		
	Realismo operativo (Bensaud-Vincent, 2009)		
	Influência da química em Bachelard (Bensaud-Vincent, 2009)		
	Filosofia dos instrumentos (Baird, 1999; Rothbart, 1999)		
Dimensão tácita	Pensamento heurístico (Nicole e et al, 2009; Talanquer, 2007)		
	Contexto da descoberta (Schummer, 2006)		
	Razão prática (Kovac, 2002)		
	Estética (Schummer, 2006; Laszlo, 2003)		
	Razão histórica (Lamza, 2010)		
	Polanyi e a química (Jo Nye, 2005)		

Tendo as dimensões descritas acima procedemos uma confrontação com a literatura da educação química e submetemos à crítica com professores experts. Após este

processo reorganizamos a discursão e representamos no diagrama abaixo.

Figura 1: Caracterização diagramática da práxis química

O CURRÍCULO A PARTIR DA práxis QUÍMICA

É possível, para trabalhos futuros, tendo o diagrama acima descrito, propor alterações e inovações curriculares; explicitar formas de organização, integração e articulações curriculares. Por exemplo, é possível propor alterações em disciplinas de didática da química, estágio supervisionado, história da química, bem como pensar em um currículo integrado e articulado a partir da práxis química. Defendemos que em todos estes níveis de recontextualizações, como já dito antes, deva ser levado em conta a especificidade da química. Esta especificidade pode e deve ser pensada nos níveis sintático, filosófico e pedagógicos. Nas sessões abaixo iremos expor um exemplo real de inovação curricular em uma disciplina de história e filosofia da química. Entretanto, outras inovações podem ser pensadas tanto em disciplinas como no nível do currículo, tanto verticais como horizontais

Princípios e orientações curriculares

Fundamentado no debate propomos os seguintes princípios e orientações curriculares. Estes princípios devem orientar a práticas de formação, análise e desenho de práticas curriculares e pedagógicas. Das cinco dimensões identificadas explicitamos diferentes princípios de organização dos conteúdos do ensino com diferentes estruturas didáticas e filosóficas.

Dimensões	Descritor mínimo		Princípios e orientações curriculares
Tácita	Códigos	Н	Comunidade de prática
	Heurísticas	е	Ensino por heurísticas (Nicole e et al,
	Práticas	u	2010)
		ri	Transmissão de códigos, heurísticas na
		st	relação mestre-aluno.
		ic	Explicitação progresssiva
		a	
Classificatória	Classificações	Α	Ensino como sistematização e
	Conceitos	lg	reorganização conceitual hierárquica
Diagramática	Diagramaticidade		Ensino como linguagem (Lazlo, 2011)
	Representações		Ensino como modelagem (Justi, 2006;
	Signos		Gilbert et Al, 2009; Chamizo, 2010, 2011)
	Símbolos		
Fenomenotécni	Instrumentos		Habitar o instrumento (inferencia a partir
ca	Medidas		de Polanyi e Bachelard)
Processual	Processualidade	M	Ensino por recursividade
	Recursividade	et	Mapaeamento
	Relações	a	Redes (Earley, 2004, 2010)
	dinâmicas	-	Rizomas
		al	
		g	
		0	
		rí ti	
		_	
		m	
		ic	
		a	

Exemplos de inovações curriculares

A estrutura do currículo de Química

Submetemos a um pequeno exame e, utilizando o diagrama, analisamos alguns programas de disciplinas de didática da química e de história da química em sete universidades brasileiras. Uma análise dos programas curriculares e pedagógicos nos permite identificar que os programas não mostram explicitamente nenhuma das dimensões; a dimensão diagramática, por trabalhar muito com a linguagem e modelagem é a mais estudada, contudo o faz em detrimento das demais. A dimensão tácita é menos problematizada.

O currículo de licenciatura em química é organizado em três tipos de conteúdos: Específicos e disciplinares; pedagógicos; humanísticos e culturais. Os conteúdos humanísticos e culturais são sujeitos a muitas inovações curriculares, em oposição aos conteúdos específicos que tem grande estabilidade de conteúdos, regulados pela tradição. Umas das inovações e articulações possíveis é pensar estes três tipos de conteúdos e os

níveis de recontextulizações curriculares a partir dos domínios da práxis como na figura abaixo.

Ilustração 1: Principais articulações entre conteúdos curriculares e níveis de recontextualizações curriculares

A temática da História da Química

Tomando os programas da disciplina de história da química e similares (disciplinas de filosofia da química disponíveis em www.Hyle.org) identificamos que os conteúdos são estabilizados, tendo pouca variação. Estes conteúdos também são os mesmos dos livros didáticos. Tomando os livros mais citados nas ementas das disciplinas de história da química, em apenas dois destes livros, o de David Knight (1990) e de Bernadet Bensaud-Vincent & Isabele Stengers (1992) há uma referência a algum princípio que não o próprio sequenciamento histórico como organização dos conteúdos. Os demais livros e a disciplina história da química seguem, com pouca variação, a tradição positivista e factualista. A seleção e organização dos conteúdos é dada pela tradição. Isso é um reflexo da própria historiografia química (McEvoy, 2000).

Proposta de inovação curricular: UESB

Desta discussão emerge nossa proposta de inovação para esta disciplina, resumida no seguinte quadro abaixo.

Tabela: Programa sugerido para a disciplina de história e filosofia da química

PRINCÍPIOS E CONTEXTOS TEÓRICOS: METACIÊNCIAS, CURRÍCULO E SABERES DOCENTES			
Saberes docentes	Curricular, pedagógico, prática, disciplinar, didático (Shulman		
	2005, 1986).		
Autonomia da	Fenomenografia, abordagens sobre a aprendizagem,		
aprendizagem	metacognição, auto-regulação das aprendizagens		
Metaciências:	Modelo complexo de ciência: (gnoseologica, retórica,		
empoderamento	praxiológica, axiológica). (Aduriz-Bravo, 2001.		
emancipação e			

humanização
Hamamzação
Dimensões da práxis Classificatória, diagramática, fenomenotécnica, procesual e química tácita (Ribeiro & Costa pereira, 2012).
PENSANDO A QUÍMICA NO CONJUNTOS DOS SABERES Existe uma forma específica de pensar a química? A especificidade química na filosofia da ciência
Centralidade e Especificidade filosófica da química e a imagem da ciência no
Insulamento da química século XX
no conjunto dos saberes Química e física: O reducionismo fisicalista Química e biologia: Pluralismo e interdisciplinaridade da práxis química
Múltiplas identidades da Ontologia química: Ciência das substâncias e dos processos química: Cultura, Conceitos químicos e tipos químicos profissão e contextos químicos Epistemologia química Ciência das substâncias e dos processos químicos e tipos químicos Referencialidade dos tipos químicos Epistemologia química
Explicação: Uma ciência diagramática, classificatória e experimental
Axiologia química
Indústria/Academia: Uma ciência pós-industrial Ética e química: Uma ciência central e útil
Natureza/artificial: Uma ciência do artificial
Criar/descobrir: Uma ciência criativa
Praxiologia química
Ciência/Técnica: Uma tecnociência
Método/intervenção: Uma ciência Dual
COMUNICANDO A ESPECIFICIDADE QUÍMICA
Existe uma forma específica de ensinar a química? Domínios transversais e articuladores didáticos e curriculares
Classificação eO estatuto epistemológico das classificações: filosofia da
organização doclassificação
conhecimento químico As classificações como princípio cognitivo da química As classificações como princípio educativo
Pensamento processual eO estatuto epistemológico das relações: Filosofia de processos
Lógica relacional do As relações na evolução cognitiva da química conhecimento químico As relações como princípio cognitivo e educativo
Diagramaticidade eO estatuto epistemológico da imagem: Pensamento
semiótica do pensamento <mark>diagramático</mark>
químico As representações na evolução cognitiva da química
O diagrama como princípio cognitivo e educativo
Dimensão tática eA heurística e o pensamento tácito na filosofia da ciência
pensamento heurístico na As heurísticas na evolução cognitiva da química química As heurísticas como princípio cognitivo e pedagógico

A filosofia	materializada Os instrumentos e as técnicas na filosofia da ciência
dos	instrumentosOs instrumentos e as técnicas na evolução da química
químicos	Os instrumentos e as técnicas como princípios cognitivo e
	pedagógico

Conclusão

Mostramos neste trabalho que o debate da filosofia da química pode e deve iluminar questões curriculares em química. Propomos a organização deste debate em um instrumento diagramático que pode servir de guia heurístico para o planejamento, formação, avaliação de práticas curriculares e didáticas.

A química é uma ciência fortemente inscrita em esquemas classificatórios; pensamento diagramático, simbólico, relacional, processual e heurístico; pela razão prática, influenciada por valores estéticos, criação e inovação; e dependente dos instrumentos e técnicas. Influenciado pela física, o contexto epistemológico da química e o seu aparelho pedagógico, tem escolhido um dos lados das antinomias químicas: substância/ processos; axiomatização à classificação e ao diagramático; o nomotético ao ideográfico; o essencialismo ao relacional e processual. O currículo, orientado pela filosofia da química, parece exigir um maior diálogo entre as antinomias e inerentes tensões da química.

Pensamos que o currículo e a didática da química devam identificar-se com as estruturas do pensamento e da práxis química, da forma química de interagir com o mundo. Uma compreensão mais detalhada destas dimensões oferece ferramentas suficientes para uma compreensão profunda e uma coerência entre pensar, intervir e comunicar. Assim, partindo da problematização do próprio conteúdo da química, iluminado pela filosofia da química, o currículo poderá integrar práticas inter e transdisciplinares. Desta maneira o debate da filosofia da química pode ter uma função instrumental no sentido de iluminar a práxis química e a práxis pedagógica no sentido de uma pedagogia emancipatória e crítica.

Pensamos também que a compreensão destas dimensões possibilite a integração da dimensão gnoseológica, axiológica, praxiológica e retórica dos conceitos químicos e dos conteúdos escolares em química levando necessariamente a que a educação química contribua com a uma literacia ou uma alfabetização científica humanista alargada.

Referências Bibliográficas

ADÚRIZ-BRAVO, Agustin. (2001). Integracion de la epistemologia en la formacion del professorado de ciencias. Tese (Doutorado), Universitat Autonoma de Barcelona.

BACHELARD, Gaston. (2009). O Pluralismo Coerente da Química Moderna. Contraponto.

BAIRD, Davis. (1993). Analytical chemistry and the big scientific instrumentation. Annals of Science, 50, 267–290.

BENSAUDE-VINCENT, Bernadette, & Stengers, Istenger. (1992). História da Química. Lisboa: Instituto Piaget.

BERKEL, Bernard van. (2005). The Structure of Current School Chemistry. A Quest for Conditions for Escape / - [S.I.] : [s.n.] - Tekst. - Proefschrift Universiteit Utrecht.

ERDURAN, Sibel. (2000). Emergence and application of philosophy of chemistry in chemistry education. School Science Review, 81(297), 85–87.

ERDURAN, Sibel. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & Education, 10, 581–593.

ERDURAN, Sibel, & SCERRI, Eric (2002). The nature of chemical knowledge and chemical education. In J. Gilbert, O. de Jong, R. Justi, D. Treagust, & J. van Driel (Eds.), Chemical education: Towards research-based practice (pp. 7–27). Dordrecht: Kluwer.

EARLEY, Joseph. (2004). Would Introductory Chemistry Courses Work Better with a New Philosophical Basis? **Foundations of Chemistry**, 6: 137-160, 2004.

EARLEY, Joseph.(2005). Why There is no Water in the Sea, **Foundations of Chemistry**, 7,85-102.

EARLEY, Joseph. (2006a). Chemical "Substances" that are not "Chemical Substances", **Philosophy of Science**, 73, 841-852.

ERIKSEN, K. (2002). The Future of Tertiary Chemical Education – A Bildung Focus? **Foundations of chemistry**. Vol. 8, No.1 (2002), pp. 35-48.

HABERMAS, I. (1994), Técnica e Ciência como "Ideologia", Lisboa, Edições 70.

IZQUIERDO-AYMERIC, Merce, & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. **Science & Education**, 12(1), 27–43.

JUSTI, Rosária. (2006). La ensenanza de ciencias basada em la elaboración de modelos. **Ensenansa de las ciências**, 24(2), 173–184.

LAMZA, L. (2010). How much history can chemistry take? **Hyle**, 16(2), 104–120.

LAURILLARD, D. (2002). Rethinking university teaching: A conversational framework for the effective use of learning technologies (2nd ed.). London: RoutledgeFalmer.

LASZLO, Pierre. (2011). <u>Towards Teaching Chemistry as a Language</u> -Science & Education, 2011 – Springer.

NICOLE, G., HENNING, H., & PETER, R. S. (2010). Heuristic thinking makes a chemist smart. **Chemical Society Reviews**, 39, 1503–1512.

POLANYI, Michael. (1966). The tacit dimension (first published Doubleday & Co, 1966. Reprinted Peter Smith, Gloucester, MA, 1983. Chapter 1: "Tacit Knowing").

ROTHBART, Daniel. (1999). On the relationship between instrument and specimen in chemical research. **Foundations of Chemistry**, 1(3), 255–268.

SCERRI, Eric. (1999). On the nature of chemistry. **Educacion Quimica**, 10(2), 74–78.

SCERRI, Eric. (2004). Philosophical confusion in chemical education research. **Journal of Chemical Education**, 80(5), 468–474.

SCERRI, Eric. (2007). Reduction and emergence in chemistry—two recent approaches. In Proceedings of the philosophy of science association.

SCHUMMER, Joachim. (1998). The chemical core of chemistry I: A conceptual approach. **Hyle**, 4-1, 129–162.

SCHUMMER, Joachim. (2006). The philosophy of chemistry: From infancy towards maturity. In D. Baird, E. Scerri, & L. MacIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (Vol. 242, pp. 19–39). Dordrecht: Springer.

SEIBERT, C. (2001). Charley Peirce's head start in chemistry. **Foundations of Chemistry**, 3(3), 201–206.

SHULMAN, Lee. (1986). Those who understand: knowledge growth in teaching. **Educational Researcher**, 15(2), 4–14.

SHULMAN, Lee. (2005). Conocimiento y ensenanza: fundamentos de la nueva reforma. **Revista de curriculum y formacion del profesorado**, 9(2), 1–30

SJOSTROM, J. (2006). Beyond classical chemistry: Subfields and metafields of the molecular sciences. **Chemistry International**, 28(September–October), 9–15.

SOUKUP, R. W. (2005). Historical aspects of the chemical bond: Chemical relationality versus physical objectivity. **Monatshefte fu**"r **Chemie**, 136, 803–813.

SPECTOR, T. I. (2003). The aesthetics of molecular representation: From the empirical to the constitutive. **Foundations of Chemistry**, 5(3), 215–236.

STEIN, R. L. (2004). Towards a process philosophy of chemistry. **Hyle**, 10-1, 5–22.

THALOS, Mariam. The Lens of Chemistry. **Science & Education** (14 February 2012), pp. 1-15.

TABER, K. S., & WATTS, M. (2000). Learners' explanations for chemical phenomena. **Chemistry Education: Research and Practice in Europe**, 1(3), 329–353.

TANNER, D., & TANNER, L. (1995). Curriculum development: Theory into practice. New Jersey: Englewood Cliffs (Vallance, E., 1986).

VAN AALSVOOR, T. J. (2004). Logical positivism as a tool to analyze the problem of chemistry's lack of relevance in secondary school chemical education. **International Journal of Science Education**, 26, 1151–1168.

VAN BRAKEL, Jap. (1997). Chemistry as the science of the transformation of substances. **Synthese**, 111(3), 253–282.

VAN BRAKEL, Jap. (1999). On the neglect of the philosophy of chemistry. **Foundations of Chemistry**, 1, 111–174.

VAN BRAKEL, Jap. (2000). Philosophy of chemistry. Between the manifest and the scientific image. Leuven: Leuven University Press.

VIHALEMM, Rein. (2007). Philosophy of chemistry and the image of science. **Foundations of Science**, 12(3), 223–234.

VIHALEMM, Rein. (2011). The autonomy of chemistry: Old and new problems. **Foundations of Chemistry**, 13(2), 97–107.

ZIMAN, J. (2000). Real science—what is, and what it means. Cambridge: Cambridge University Press.

i. As duas grandes teorias são a Teoria de Ligação de Valência e a Teoria das Orbitais Moleculares, com bases totalmente diferentes e de que derivam conceitos também muito diferentes, que na generalidade dos compêndios de Química aparecem indiferenciados, situação que contribui para mais uma dificuldade de aprendizagem da Química.