Concepções de alunos sobre noções importantes para a compreensão do equilíbrio químico

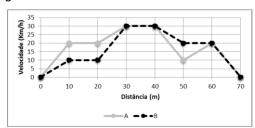
Mayara Fernandes^{(1)*} (IC), Patrícia Cristina Costa Ladeira⁽²⁾ (IC), Maisa Helena Altarugio⁽³⁾ (PQ)

*mayara.fernandes@aluno.ufabc.edu.br

(1,2,3) Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-170, Santo André, SP.

Palavras-Chave: equilíbrio químico, concepções alternativas.

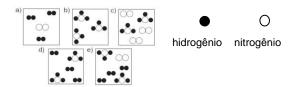
Introdução


Este trabalho apresenta algumas discussões sobre as concepções de 47 alunos de 3º ano do ensino médio, de uma escola pública de São Bernardo do Campo - SP a cerca de noções que consideramos importantes para a aprendizagem do tema Equilíbrios Químicos. Foram investigadas as noções de igual e de constante e de coexistência de reagentes e produtos num sistema de partículas no estado de equilíbrio. Segundo Machado e Aragão [1] é comum os estudantes apresentarem dificuldades conceituais na compreensão do equilíbrio químico apesar de serem capazes de realizar cálculos associados a esse conteúdo. O instrumento para coleta dos dados foi elaborado por licenciandos em Química da UFABC para a disciplina de Prática de Ensino de Química.

Resultados e Discussão

O instrumento constituiu-se de duas questões de múltipla escolha objetivando coletar as concepções iniciais dos alunos após as aulas introdutórias sobre o tema, sendo respondidas individualmente.

Na primeira questão, para a abordagem das noções de *igual* e de *constante* foi utilizado um contexto fora da química: num gráfico (Fig.1) com as velocidades (em Km/h) de dois ciclistas (A e B) em diferentes trechos de uma estrada, os alunos deveriam identificar onde A e B andaram com velocidades *iguais* (item a), com velocidades *constantes* (item b) e com velocidades *iguais* e *constantes* (item c).


Figura 1: Gráfico: velocidade x distância

Notou-se, no item a, que 70% dos alunos conseguiu identificar os dois trechos com velocidades *iguais* (30 a 40m e 60 a 70m), mas 27% consideraram apenas como velocidade *igual* o trecho onde ela também é *constante* (30 a 40m). No item b, apenas 21% dos alunos identificaram os dois trechos onde as velocidades são *constantes* (10 a 20m e 30 a

40m), sendo que 23% identificaram apenas um dos trechos corretamente e os demais consideraram velocidades constantes onde também são iguais. No item c, 57% dos alunos assinalaram corretamente o trecho com velocidades iguais e constantes (30 a 40m), sendo que os demais alunos apresentaram dificuldades semelhantes aos itens anteriores. Tais confusões conceituais são comuns e podem dificultar a compreensão do que ocorre no estado de equilíbrio, onde as concentrações de reagentes e produtos são constantes, mas não necessariamente iguais. Para investigar se os alunos concebem a coexistência de reagentes e produtos, na segunda questão eles poderiam escolher, entre cinco figuras, qual delas representaria melhor, microscopicamente e qualitativamente, o estado de equilíbrio químico da reação de formação da amônia (Figura 2).

Figura 2. Alternativas para a questão 2.

Obtivemos a maioria (38%) das respostas apontando para a coexistência de produtos e reagentes (alternativa e). No entanto, apenas metade desses alunos apresentou justificativa satisfatória relacionando o estado de equilíbrio com a presença de todas as espécies. Entre as outras alternativas, a mais indicada (26%) foi a que representava apenas a presença da amônia como produto final no equilíbrio (b), sugerindo que se investigue também a compreensão do conceito de reversibilidade numa transformação química.

Conclusões

Entendemos que a dificuldade nos tópicos investigados pode comprometer a aprendizagem do tema equilíbrio químico. É importante que o professor fique atento às concepções mais elementares, de modo a facilitar a posterior aprendizagem de conceitos mais complexos.

[1] MACHADO, A. H.; de ARAGÃO, R. M. R. Como os estudantes concebem o estado de equilíbrio químico. **Química Nova na escola**, v. 4, p. 18-20, 1996.

Divisão de Ensino de Química da Sociedade Brasileira de Química (ED/SBQ) Instituto de Química da Universidade Federal da Bahia (IQ/UFBA)